简单明了之堆排序

2024-08-22 08:48
文章标签 堆排序 简单明了

本文主要是介绍简单明了之堆排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


堆排序快速排序归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法。学习堆排序前,先讲解下什么是数据结构中的二叉堆。

二叉堆的定义

二叉堆是完全二叉树或者是近似完全二叉树。

二叉堆满足二个特性:

1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。

2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。

当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:

由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。

堆的存储

一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

堆的操作——插入删除

下面先给出《数据结构C++语言描述》中最小堆的建立插入删除的图解,再给出本人的实现代码,最好是先看明白图后再去看代码。

堆的插入

每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中,对照《白话经典算法系列之二 直接插入排序的三种实现》不难写出插入一个新数据时堆的调整代码:

[cpp] view plain copy print ?
  1. //  新加入i结点  其父结点为(i - 1) / 2  
  2. void MinHeapFixup(int a[], int i)  
  3. {  
  4.     int j, temp;  
  5.       
  6.     temp = a[i];  
  7.     j = (i - 1) / 2;      //父结点  
  8.     while (j >= 0 && i != 0)  
  9.     {  
  10.         if (a[j] <= temp)  
  11.             break;  
  12.           
  13.         a[i] = a[j];     //把较大的子结点往下移动,替换它的子结点  
  14.         i = j;  
  15.         j = (i - 1) / 2;  
  16.     }  
  17.     a[i] = temp;  
  18. }  
//  新加入i结点  其父结点为(i - 1) / 2
void MinHeapFixup(int a[], int i)
{int j, temp;temp = a[i];j = (i - 1) / 2;      //父结点while (j >= 0 && i != 0){if (a[j] <= temp)break;a[i] = a[j];     //把较大的子结点往下移动,替换它的子结点i = j;j = (i - 1) / 2;}a[i] = temp;
}

更简短的表达为:

[cpp] view plain copy print ?
  1. void MinHeapFixup(int a[], int i)  
  2. {  
  3.     for (int j = (i - 1) / 2; (j >= 0 && i != 0)&& a[i] > a[j]; i = j, j = (i - 1) / 2)  
  4.         Swap(a[i], a[j]);  
  5. }  
void MinHeapFixup(int a[], int i)
{for (int j = (i - 1) / 2; (j >= 0 && i != 0)&& a[i] > a[j]; i = j, j = (i - 1) / 2)Swap(a[i], a[j]);
}

插入时:

[cpp] view plain copy print ?
  1. //在最小堆中加入新的数据nNum  
  2. void MinHeapAddNumber(int a[], int n, int nNum)  
  3. {  
  4.     a[n] = nNum;  
  5.     MinHeapFixup(a, n);  
  6. }  
//在最小堆中加入新的数据nNum
void MinHeapAddNumber(int a[], int n, int nNum)
{a[n] = nNum;MinHeapFixup(a, n);
}

堆的删除

按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。下面给出代码:

[cpp] view plain copy print ?
  1. //  从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2  
  2. void MinHeapFixdown(int a[], int i, int n)  
  3. {  
  4.     int j, temp;  
  5.   
  6.     temp = a[i];  
  7.     j = 2 * i + 1;  
  8.     while (j < n)  
  9.     {  
  10.         if (j + 1 < n && a[j + 1] < a[j]) //在左右孩子中找最小的  
  11.             j++;  
  12.   
  13.         if (a[j] >= temp)  
  14.             break;  
  15.   
  16.         a[i] = a[j];     //把较小的子结点往上移动,替换它的父结点  
  17.         i = j;  
  18.         j = 2 * i + 1;  
  19.     }  
  20.     a[i] = temp;  
  21. }  
  22. //在最小堆中删除数  
  23. void MinHeapDeleteNumber(int a[], int n)  
  24. {  
  25.     Swap(a[0], a[n - 1]);  
  26.     MinHeapFixdown(a, 0, n - 1);  
  27. }  
//  从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2
void MinHeapFixdown(int a[], int i, int n)
{int j, temp;temp = a[i];j = 2 * i + 1;while (j < n){if (j + 1 < n && a[j + 1] < a[j]) //在左右孩子中找最小的j++;if (a[j] >= temp)break;a[i] = a[j];     //把较小的子结点往上移动,替换它的父结点i = j;j = 2 * i + 1;}a[i] = temp;
}
//在最小堆中删除数
void MinHeapDeleteNumber(int a[], int n)
{Swap(a[0], a[n - 1]);MinHeapFixdown(a, 0, n - 1);
}

堆化数组

有了堆的插入和删除后,再考虑下如何对一个数据进行堆化操作。要一个一个的从数组中取出数据来建立堆吧,不用!先看一个数组,如下图:

很明显,对叶子结点来说,可以认为它已经是一个合法的堆了即20,60, 65, 4, 49都分别是一个合法的堆。只要从A[4]=50开始向下调整就可以了。然后再取A[3]=30,A[2] = 17,A[1] = 12,A[0] = 9分别作一次向下调整操作就可以了。下图展示了这些步骤:

写出堆化数组的代码:

[cpp] view plain copy print ?
  1. //建立最小堆  
  2. void MakeMinHeap(int a[], int n)  
  3. {  
  4.     for (int i = n / 2 - 1; i >= 0; i--)  
  5.         MinHeapFixdown(a, i, n);  
  6. }  
//建立最小堆
void MakeMinHeap(int a[], int n)
{for (int i = n / 2 - 1; i >= 0; i--)MinHeapFixdown(a, i, n);
}


至此,堆的操作就全部完成了(注1),再来看下如何用堆这种数据结构来进行排序。

堆排序

首先可以看到堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。

由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于直接选择排序

[cpp] view plain copy print ?
  1. void MinheapsortTodescendarray(int a[], int n)  
  2. {  
  3.     for (int i = n - 1; i >= 1; i--)  
  4.     {  
  5.         Swap(a[i], a[0]);  
  6.         MinHeapFixdown(a, 0, i);  
  7.     }  
  8. }  
void MinheapsortTodescendarray(int a[], int n)
{for (int i = n - 1; i >= 1; i--){Swap(a[i], a[0]);MinHeapFixdown(a, 0, i);}
}

注意使用最小堆排序后是递减数组,要得到递增数组,可以使用最大堆。

由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。故堆排序的时间复杂度为O(N * logN)。STL也实现了堆的相关函数,可以参阅《STL系列之四 heap 堆》。

 

 

注1 作为一个数据结构,最好用类将其数据和方法封装起来,这样即便于操作,也便于理解。此外,除了堆排序要使用堆,另外还有很多场合可以使用堆来方便和高效的处理数据,以后会一一介绍。

 

 

转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/6709644

这篇关于简单明了之堆排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095802

相关文章

在Java中实现堆排序的步骤详解

《在Java中实现堆排序的步骤详解》堆排序是一种基于堆数据结构的排序算法,堆是一种特殊的完全二叉树,堆排序利用堆的性质通过一系列操作将数组元素按升序或降序排列,本文给大家介绍了如何在Java中实现堆排... 目录引言一、堆排序的基本原理二、堆排序的实现步骤三、堆排序的时间复杂度和空间复杂度四、堆排序的工作流

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

优先队列与堆排序

PriorityQueue 优先级队列中的元素可以按照任意的顺序插入,却总是按照排序的顺序进行检索。无论何时调用remove方法,总会获得当前优先级队列中的最小元素(其实是返回堆顶元素),但并不是对所有元素都排序。它是采用了堆(一个可以自我调整的二叉树),执行增加删除操作后,可以让最小元素移动到根。 堆排序复习 package com.jefflee;import java.util.Arr

6.2排序——选择排序与堆排序

本篇博客梳理选择排序,包括直接选择排序与堆排序 排序全部默认排成升序 一、直接选择排序 1.算法思想 每次遍历都选出最小的和最大的,放到序列最前面/最后面 2.具体操作 (1)单趟 每次遍历都选出最小的和最大的。遍历时,遇到更小的,更新min,遇到更大的,更新max (2)单趟变整体 每趟遍历完之后,begin++,end– 程序结构如下 while(begin<end){//

堆与堆排序之初见

堆(本文只提二叉堆,当然也有多叉堆)作为一种数据结构,是一个数组,可以被看成是一个近似的完全二叉树,树上的每一个节点对应数组中的一个元素,并且除了最底层节点外,该树是完全充满的,而且是从左向右依次填充。 我们目前经常听到的名词“堆”已经被引申为“垃圾收集存储机制”,但本文提及的“堆”指的是堆数据结构。 为了后续描述方便,我们定义堆的数组为H,用H.length表示堆数组的大小,用H.size表示堆

堆排序算法剖析(基于Java)

什么是堆结构? 堆排序的关键是构造堆结构,首先谈一下堆结构的定义,堆结构是一种树结构,准确地说是一个完全二叉树,完全二叉树的定义在这里就不多赘述了,百度知道。 按照排序顺序,堆结构可以分为两种: 1.按照从小到大的顺序排序,要求非叶节点的数据要大于或等于其左、右子节点的数据。 2.按照从大到小的顺序排序,要求非叶节点的数据要小于或等于其左、右子节点的数据。 本文以从小到大的顺序为例进行介

排序算法(动图详细讲解)(直接插入排序,希尔排序,堆排序,冒泡排序)

前言:         排序的方式有很多种,不同的排序思想是不一样的。         但是排序的时间复杂度和空间复杂度也都有区别。         例如:         最简单的冒泡排序,时间复杂度为O(N)         对排序的时间复杂度为O(N*logN)。 接下来就来仔细分析每种排序的思路,并写出代码。 插入排序:  基本思想:         直接插入排序是一种简

堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)

堆的建立、插入、出堆、堆化、topk问题、堆排序 使用数组来存储堆 堆顶为序号0,堆底为序号 size - 1 假设树为完全二叉树,当前节点和双亲节点的关系可以通过公式表达 // 小顶堆: 对 heaptifyUp 和 heaptifyDown 函数的逻辑进行一些调整。void initHeap(float **arr, int *size) { *arr = (float *)malloc

内部排序之三:堆排序

前言    堆排序、快速排序、归并排序(下篇会写这两种排序算法)的平均时间复杂度都为O(n*logn)。要弄清楚堆排序,就要先了解下二叉堆这种数据结构。本文不打算完全讲述二叉堆的所有操作,而是着重讲述堆排序中要用到的操作。比如我们建堆的时候可以采用堆的插入操作(将元素插入到适当的位置,使新的序列仍符合堆的定义)将元素一个一个地插入到堆中,但其实我们完全没必要这么做,我们有执行操作更少的方法,

算法-排序算法:堆排序(HeapSort )【O(nlogn)】

MyArray.java /*** 数组** @author* @version 2018/8/4*/public class MyArray<E> {private E[] arr;private int size;public MyArray(int capacity){arr = (E[])new Object[capacity];size = 0;}public MyArray() {