堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)

2024-09-03 01:12

本文主要是介绍堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

堆的建立、插入、出堆、堆化、topk问题、堆排序

  • 使用数组来存储堆
    • 堆顶为序号0,堆底为序号 size - 1
  • 假设树为完全二叉树,当前节点和双亲节点的关系可以通过公式表达
// 小顶堆: 对 heaptifyUp 和 heaptifyDown 函数的逻辑进行一些调整。
void initHeap(float **arr, int *size) { *arr = (float *)malloc(sizeof(float) * MAX_SIZE); *size = 0; }
void peekTop(float *arr, int size, float *x) { if (size <= 0) return; *x = arr[0]; }
void getParent(int i, int *p_idx) { *p_idx = (i - 1) / 2; }
void getLeftChild(int i, int *lc_idx) { *lc_idx = 2 * i + 1; }
void getRightChild(int i, int *rc_idx) { *rc_idx = 2 * i + 2; }
void heaptifyUp(float *arr, int idx) { // 比较当前节点与其父节点的大小。如果当前节点的值小于父节点的值,则交换它们,并继续向上调整。int cur = idx;while (cur > 0) {  // 只要 cur 不是根节点int par; getParent(cur, &par); if (arr[cur] >= arr[par]) break; // 如果当前节点大于等于父节点,退出循环float tmp = arr[cur]; arr[cur] = arr[par]; arr[par] = tmp; cur = par;  // 交换当前节点和父节点, 更新 cur 为父节点索引}
}
void heaptifyDown(float *arr, int size, int idx) { // 比较当前节点与其左右子节点的大小。选择最小的子节点,如果当前节点大于这个子节点,则交换它们,并继续向下调整。int cur = idx;while (true) {int lc, rc, minidx = cur; getLeftChild(cur, &lc); getRightChild(cur, &rc);if (lc < size && arr[lc] < arr[minidx]) { minidx = lc; } // 找到当前节点和左子节点中的最小值if (rc < size && arr[rc] < arr[minidx]) { minidx = rc; } // 找到当前节点和右子节点中的最小值if (minidx == cur) break; // 如果当前节点是最小值,退出循环float tmp = arr[cur]; arr[cur] = arr[minidx]; arr[minidx] = tmp; cur = minidx;  // 交换当前节点和最小值节点, 更新 cur 为新的索引}
}
void pushHeap(float *arr, int *size, float x) {if ((*size) >= MAX_SIZE) return; // 如果堆已满,直接返回arr[*size] = x; (*size)++; // 将新元素放在堆的最后一个位置heaptifyUp(arr, (*size) - 1); // 重新调整堆
}
void popHeap(float *arr, int *size, float *val) {if ((*size) <= 0) return; // 如果堆为空,直接返回*val = arr[0]; arr[0] = arr[(*size) - 1]; // 将堆的最后一个元素放在堆顶(*size)--; heaptifyDown(arr, *size, 0); // 重新调整堆
}
void buildHeap(float *arr, int size){// 使用heaptifyDown的原因是,如果使用 heaptifyUp从树的底部向上调整,每个节点在最坏情况下可能需要一直移到树的根部(并且底部的节点数量多)。// 这意味着可能需要执行更多的比较和交换操作。而如果我们从上往下调整,每个节点最多只需要向下移动几层(通常是树的高度),这使得整体效率非常高。for (int i = size / 2 - 1; i >= 0; i--) heaptifyDown(arr, size, i); // 从最后一个非叶子节点(size/2 - 1)开始,向上调整堆;
}
void freeHeap(float **arr) { if (*arr) { free(*arr); *arr = NULL; } }
void top_k(float *arr, int size, float *res, int k) {if (k <= 0 || k > size) return;float *heap = (float *)malloc(sizeof(float) * k); int heap_size = 0;for (int i = 0; i < k; i++){ pushHeap(heap, &heap_size, arr[i]); } //  // 初始化堆,放入前 k 个元素for (int i = k; i < size; i++){ if (arr[i] > heap[0]) { float tmp; popHeap(heap, &heap_size, &tmp); pushHeap(heap, &heap_size, arr[i]); } } // 处理剩余的元素for (int i = 0; i < k; i++) { popHeap(heap, &heap_size, &res[k - 1 - i]); } // 将堆中的元素按降序输出到 res 数组freeHeap(&heap);
}
// parallel: 在构建堆时,并行化处理多个子树的下沉操作
void heap_sort(float *heap, int size){ // 堆排序,从大道小排序buildHeap( heap, size); // 构建小顶堆while (size > 1) {float tmp = heap[0]; heap[0] = heap[size - 1]; heap[size - 1] = tmp; size--; // 将堆顶元素与堆的最后一个元素交换,每次循环最小的元素被调整到末尾,堆的大小减1heaptifyDown(heap, size, 0); // 从堆顶开始重新调整堆}freeHeap(&heap);
} 大顶堆
//void initHeap(float **arr, int *size) { *arr = (float *)malloc(sizeof(float) * MAX_SIZE); *size = 0; } // 初始化堆的大小为0
//void peekTop(float *arr, int size, float *x) { if (size <= 0) return ; *x = arr[0]; }
//void getParent(int i, int *p_idx) { *p_idx = (i - 1) / 2; }
//void getLeftChild(int i, int *lc_idx) { *lc_idx = 2 * i + 1; }
//void getRightChild(int i, int *rc_idx) { *rc_idx = 2 * i + 2; }
//void heaptifyUp(float *arr, int idx){
//    int cur = idx;
//    while (cur > 0){  // 只要 cur 不是根节点
//        int par; getParent(cur, &par); if (arr[cur] < arr[par]) break; // 如果当前节点小于父节点,退出循环
//        float tmp = arr[cur]; arr[cur] = arr[par]; arr[par] = tmp; cur = par;  // 交换当前节点和父节点
//    }
//}
//void heaptifyDown(float *arr, int size, int idx){
//    int cur = idx;
//    while (true){
//        int lc, rc, maxidx = cur; getLeftChild(cur, &lc); getRightChild(cur, &rc);
//        if (lc < size && arr[lc] > arr[maxidx]) { maxidx = lc;} // 找到当前节点和左子节点中的最大值
//        if (rc < size && arr[rc] > arr[maxidx]) { maxidx = rc;} // 找到当前节点和右子节点中的最大值
//        if (maxidx == cur) break; // 如果当前节点是最大值,退出循环
//        float tmp = arr[cur]; arr[cur] = arr[maxidx]; arr[maxidx] = tmp; cur = maxidx; // 交换当前节点和最大值节点
//    }
//}
//void pushHeap(float *arr, int *size, float x){
//    if ((*size) >= MAX_SIZE) return; // 如果堆已满,直接返回
//    arr[*size] = x; (*size)++; // 将新元素放在堆的最后一个位置
//    heaptifyUp(arr, (*size) - 1); // 重新调整堆
//}
//void popHeap(float *arr, int *size, float *val){
//    if ((*size) <= 0) return; // 如果堆为空,直接返回
//    *val = arr[0];
//    arr[0] = arr[(*size) - 1]; // 将堆的最后一个元素放在堆顶
//    (*size)--;
//    heaptifyDown(arr, *size,0); // 重新调整堆
//}
//void freeHeap(float **arr) { if (*arr) { free(*arr); *arr = NULL; } }

这篇关于堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131599

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形