堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)

2024-09-03 01:12

本文主要是介绍堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

堆的建立、插入、出堆、堆化、topk问题、堆排序

  • 使用数组来存储堆
    • 堆顶为序号0,堆底为序号 size - 1
  • 假设树为完全二叉树,当前节点和双亲节点的关系可以通过公式表达
// 小顶堆: 对 heaptifyUp 和 heaptifyDown 函数的逻辑进行一些调整。
void initHeap(float **arr, int *size) { *arr = (float *)malloc(sizeof(float) * MAX_SIZE); *size = 0; }
void peekTop(float *arr, int size, float *x) { if (size <= 0) return; *x = arr[0]; }
void getParent(int i, int *p_idx) { *p_idx = (i - 1) / 2; }
void getLeftChild(int i, int *lc_idx) { *lc_idx = 2 * i + 1; }
void getRightChild(int i, int *rc_idx) { *rc_idx = 2 * i + 2; }
void heaptifyUp(float *arr, int idx) { // 比较当前节点与其父节点的大小。如果当前节点的值小于父节点的值,则交换它们,并继续向上调整。int cur = idx;while (cur > 0) {  // 只要 cur 不是根节点int par; getParent(cur, &par); if (arr[cur] >= arr[par]) break; // 如果当前节点大于等于父节点,退出循环float tmp = arr[cur]; arr[cur] = arr[par]; arr[par] = tmp; cur = par;  // 交换当前节点和父节点, 更新 cur 为父节点索引}
}
void heaptifyDown(float *arr, int size, int idx) { // 比较当前节点与其左右子节点的大小。选择最小的子节点,如果当前节点大于这个子节点,则交换它们,并继续向下调整。int cur = idx;while (true) {int lc, rc, minidx = cur; getLeftChild(cur, &lc); getRightChild(cur, &rc);if (lc < size && arr[lc] < arr[minidx]) { minidx = lc; } // 找到当前节点和左子节点中的最小值if (rc < size && arr[rc] < arr[minidx]) { minidx = rc; } // 找到当前节点和右子节点中的最小值if (minidx == cur) break; // 如果当前节点是最小值,退出循环float tmp = arr[cur]; arr[cur] = arr[minidx]; arr[minidx] = tmp; cur = minidx;  // 交换当前节点和最小值节点, 更新 cur 为新的索引}
}
void pushHeap(float *arr, int *size, float x) {if ((*size) >= MAX_SIZE) return; // 如果堆已满,直接返回arr[*size] = x; (*size)++; // 将新元素放在堆的最后一个位置heaptifyUp(arr, (*size) - 1); // 重新调整堆
}
void popHeap(float *arr, int *size, float *val) {if ((*size) <= 0) return; // 如果堆为空,直接返回*val = arr[0]; arr[0] = arr[(*size) - 1]; // 将堆的最后一个元素放在堆顶(*size)--; heaptifyDown(arr, *size, 0); // 重新调整堆
}
void buildHeap(float *arr, int size){// 使用heaptifyDown的原因是,如果使用 heaptifyUp从树的底部向上调整,每个节点在最坏情况下可能需要一直移到树的根部(并且底部的节点数量多)。// 这意味着可能需要执行更多的比较和交换操作。而如果我们从上往下调整,每个节点最多只需要向下移动几层(通常是树的高度),这使得整体效率非常高。for (int i = size / 2 - 1; i >= 0; i--) heaptifyDown(arr, size, i); // 从最后一个非叶子节点(size/2 - 1)开始,向上调整堆;
}
void freeHeap(float **arr) { if (*arr) { free(*arr); *arr = NULL; } }
void top_k(float *arr, int size, float *res, int k) {if (k <= 0 || k > size) return;float *heap = (float *)malloc(sizeof(float) * k); int heap_size = 0;for (int i = 0; i < k; i++){ pushHeap(heap, &heap_size, arr[i]); } //  // 初始化堆,放入前 k 个元素for (int i = k; i < size; i++){ if (arr[i] > heap[0]) { float tmp; popHeap(heap, &heap_size, &tmp); pushHeap(heap, &heap_size, arr[i]); } } // 处理剩余的元素for (int i = 0; i < k; i++) { popHeap(heap, &heap_size, &res[k - 1 - i]); } // 将堆中的元素按降序输出到 res 数组freeHeap(&heap);
}
// parallel: 在构建堆时,并行化处理多个子树的下沉操作
void heap_sort(float *heap, int size){ // 堆排序,从大道小排序buildHeap( heap, size); // 构建小顶堆while (size > 1) {float tmp = heap[0]; heap[0] = heap[size - 1]; heap[size - 1] = tmp; size--; // 将堆顶元素与堆的最后一个元素交换,每次循环最小的元素被调整到末尾,堆的大小减1heaptifyDown(heap, size, 0); // 从堆顶开始重新调整堆}freeHeap(&heap);
} 大顶堆
//void initHeap(float **arr, int *size) { *arr = (float *)malloc(sizeof(float) * MAX_SIZE); *size = 0; } // 初始化堆的大小为0
//void peekTop(float *arr, int size, float *x) { if (size <= 0) return ; *x = arr[0]; }
//void getParent(int i, int *p_idx) { *p_idx = (i - 1) / 2; }
//void getLeftChild(int i, int *lc_idx) { *lc_idx = 2 * i + 1; }
//void getRightChild(int i, int *rc_idx) { *rc_idx = 2 * i + 2; }
//void heaptifyUp(float *arr, int idx){
//    int cur = idx;
//    while (cur > 0){  // 只要 cur 不是根节点
//        int par; getParent(cur, &par); if (arr[cur] < arr[par]) break; // 如果当前节点小于父节点,退出循环
//        float tmp = arr[cur]; arr[cur] = arr[par]; arr[par] = tmp; cur = par;  // 交换当前节点和父节点
//    }
//}
//void heaptifyDown(float *arr, int size, int idx){
//    int cur = idx;
//    while (true){
//        int lc, rc, maxidx = cur; getLeftChild(cur, &lc); getRightChild(cur, &rc);
//        if (lc < size && arr[lc] > arr[maxidx]) { maxidx = lc;} // 找到当前节点和左子节点中的最大值
//        if (rc < size && arr[rc] > arr[maxidx]) { maxidx = rc;} // 找到当前节点和右子节点中的最大值
//        if (maxidx == cur) break; // 如果当前节点是最大值,退出循环
//        float tmp = arr[cur]; arr[cur] = arr[maxidx]; arr[maxidx] = tmp; cur = maxidx; // 交换当前节点和最大值节点
//    }
//}
//void pushHeap(float *arr, int *size, float x){
//    if ((*size) >= MAX_SIZE) return; // 如果堆已满,直接返回
//    arr[*size] = x; (*size)++; // 将新元素放在堆的最后一个位置
//    heaptifyUp(arr, (*size) - 1); // 重新调整堆
//}
//void popHeap(float *arr, int *size, float *val){
//    if ((*size) <= 0) return; // 如果堆为空,直接返回
//    *val = arr[0];
//    arr[0] = arr[(*size) - 1]; // 将堆的最后一个元素放在堆顶
//    (*size)--;
//    heaptifyDown(arr, *size,0); // 重新调整堆
//}
//void freeHeap(float **arr) { if (*arr) { free(*arr); *arr = NULL; } }

这篇关于堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131599

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义