堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)

2024-09-03 01:12

本文主要是介绍堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

堆的建立、插入、出堆、堆化、topk问题、堆排序

  • 使用数组来存储堆
    • 堆顶为序号0,堆底为序号 size - 1
  • 假设树为完全二叉树,当前节点和双亲节点的关系可以通过公式表达
// 小顶堆: 对 heaptifyUp 和 heaptifyDown 函数的逻辑进行一些调整。
void initHeap(float **arr, int *size) { *arr = (float *)malloc(sizeof(float) * MAX_SIZE); *size = 0; }
void peekTop(float *arr, int size, float *x) { if (size <= 0) return; *x = arr[0]; }
void getParent(int i, int *p_idx) { *p_idx = (i - 1) / 2; }
void getLeftChild(int i, int *lc_idx) { *lc_idx = 2 * i + 1; }
void getRightChild(int i, int *rc_idx) { *rc_idx = 2 * i + 2; }
void heaptifyUp(float *arr, int idx) { // 比较当前节点与其父节点的大小。如果当前节点的值小于父节点的值,则交换它们,并继续向上调整。int cur = idx;while (cur > 0) {  // 只要 cur 不是根节点int par; getParent(cur, &par); if (arr[cur] >= arr[par]) break; // 如果当前节点大于等于父节点,退出循环float tmp = arr[cur]; arr[cur] = arr[par]; arr[par] = tmp; cur = par;  // 交换当前节点和父节点, 更新 cur 为父节点索引}
}
void heaptifyDown(float *arr, int size, int idx) { // 比较当前节点与其左右子节点的大小。选择最小的子节点,如果当前节点大于这个子节点,则交换它们,并继续向下调整。int cur = idx;while (true) {int lc, rc, minidx = cur; getLeftChild(cur, &lc); getRightChild(cur, &rc);if (lc < size && arr[lc] < arr[minidx]) { minidx = lc; } // 找到当前节点和左子节点中的最小值if (rc < size && arr[rc] < arr[minidx]) { minidx = rc; } // 找到当前节点和右子节点中的最小值if (minidx == cur) break; // 如果当前节点是最小值,退出循环float tmp = arr[cur]; arr[cur] = arr[minidx]; arr[minidx] = tmp; cur = minidx;  // 交换当前节点和最小值节点, 更新 cur 为新的索引}
}
void pushHeap(float *arr, int *size, float x) {if ((*size) >= MAX_SIZE) return; // 如果堆已满,直接返回arr[*size] = x; (*size)++; // 将新元素放在堆的最后一个位置heaptifyUp(arr, (*size) - 1); // 重新调整堆
}
void popHeap(float *arr, int *size, float *val) {if ((*size) <= 0) return; // 如果堆为空,直接返回*val = arr[0]; arr[0] = arr[(*size) - 1]; // 将堆的最后一个元素放在堆顶(*size)--; heaptifyDown(arr, *size, 0); // 重新调整堆
}
void buildHeap(float *arr, int size){// 使用heaptifyDown的原因是,如果使用 heaptifyUp从树的底部向上调整,每个节点在最坏情况下可能需要一直移到树的根部(并且底部的节点数量多)。// 这意味着可能需要执行更多的比较和交换操作。而如果我们从上往下调整,每个节点最多只需要向下移动几层(通常是树的高度),这使得整体效率非常高。for (int i = size / 2 - 1; i >= 0; i--) heaptifyDown(arr, size, i); // 从最后一个非叶子节点(size/2 - 1)开始,向上调整堆;
}
void freeHeap(float **arr) { if (*arr) { free(*arr); *arr = NULL; } }
void top_k(float *arr, int size, float *res, int k) {if (k <= 0 || k > size) return;float *heap = (float *)malloc(sizeof(float) * k); int heap_size = 0;for (int i = 0; i < k; i++){ pushHeap(heap, &heap_size, arr[i]); } //  // 初始化堆,放入前 k 个元素for (int i = k; i < size; i++){ if (arr[i] > heap[0]) { float tmp; popHeap(heap, &heap_size, &tmp); pushHeap(heap, &heap_size, arr[i]); } } // 处理剩余的元素for (int i = 0; i < k; i++) { popHeap(heap, &heap_size, &res[k - 1 - i]); } // 将堆中的元素按降序输出到 res 数组freeHeap(&heap);
}
// parallel: 在构建堆时,并行化处理多个子树的下沉操作
void heap_sort(float *heap, int size){ // 堆排序,从大道小排序buildHeap( heap, size); // 构建小顶堆while (size > 1) {float tmp = heap[0]; heap[0] = heap[size - 1]; heap[size - 1] = tmp; size--; // 将堆顶元素与堆的最后一个元素交换,每次循环最小的元素被调整到末尾,堆的大小减1heaptifyDown(heap, size, 0); // 从堆顶开始重新调整堆}freeHeap(&heap);
} 大顶堆
//void initHeap(float **arr, int *size) { *arr = (float *)malloc(sizeof(float) * MAX_SIZE); *size = 0; } // 初始化堆的大小为0
//void peekTop(float *arr, int size, float *x) { if (size <= 0) return ; *x = arr[0]; }
//void getParent(int i, int *p_idx) { *p_idx = (i - 1) / 2; }
//void getLeftChild(int i, int *lc_idx) { *lc_idx = 2 * i + 1; }
//void getRightChild(int i, int *rc_idx) { *rc_idx = 2 * i + 2; }
//void heaptifyUp(float *arr, int idx){
//    int cur = idx;
//    while (cur > 0){  // 只要 cur 不是根节点
//        int par; getParent(cur, &par); if (arr[cur] < arr[par]) break; // 如果当前节点小于父节点,退出循环
//        float tmp = arr[cur]; arr[cur] = arr[par]; arr[par] = tmp; cur = par;  // 交换当前节点和父节点
//    }
//}
//void heaptifyDown(float *arr, int size, int idx){
//    int cur = idx;
//    while (true){
//        int lc, rc, maxidx = cur; getLeftChild(cur, &lc); getRightChild(cur, &rc);
//        if (lc < size && arr[lc] > arr[maxidx]) { maxidx = lc;} // 找到当前节点和左子节点中的最大值
//        if (rc < size && arr[rc] > arr[maxidx]) { maxidx = rc;} // 找到当前节点和右子节点中的最大值
//        if (maxidx == cur) break; // 如果当前节点是最大值,退出循环
//        float tmp = arr[cur]; arr[cur] = arr[maxidx]; arr[maxidx] = tmp; cur = maxidx; // 交换当前节点和最大值节点
//    }
//}
//void pushHeap(float *arr, int *size, float x){
//    if ((*size) >= MAX_SIZE) return; // 如果堆已满,直接返回
//    arr[*size] = x; (*size)++; // 将新元素放在堆的最后一个位置
//    heaptifyUp(arr, (*size) - 1); // 重新调整堆
//}
//void popHeap(float *arr, int *size, float *val){
//    if ((*size) <= 0) return; // 如果堆为空,直接返回
//    *val = arr[0];
//    arr[0] = arr[(*size) - 1]; // 将堆的最后一个元素放在堆顶
//    (*size)--;
//    heaptifyDown(arr, *size,0); // 重新调整堆
//}
//void freeHeap(float **arr) { if (*arr) { free(*arr); *arr = NULL; } }

这篇关于堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131599

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服