堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)

2024-09-03 01:12

本文主要是介绍堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

堆的建立、插入、出堆、堆化、topk问题、堆排序

  • 使用数组来存储堆
    • 堆顶为序号0,堆底为序号 size - 1
  • 假设树为完全二叉树,当前节点和双亲节点的关系可以通过公式表达
// 小顶堆: 对 heaptifyUp 和 heaptifyDown 函数的逻辑进行一些调整。
void initHeap(float **arr, int *size) { *arr = (float *)malloc(sizeof(float) * MAX_SIZE); *size = 0; }
void peekTop(float *arr, int size, float *x) { if (size <= 0) return; *x = arr[0]; }
void getParent(int i, int *p_idx) { *p_idx = (i - 1) / 2; }
void getLeftChild(int i, int *lc_idx) { *lc_idx = 2 * i + 1; }
void getRightChild(int i, int *rc_idx) { *rc_idx = 2 * i + 2; }
void heaptifyUp(float *arr, int idx) { // 比较当前节点与其父节点的大小。如果当前节点的值小于父节点的值,则交换它们,并继续向上调整。int cur = idx;while (cur > 0) {  // 只要 cur 不是根节点int par; getParent(cur, &par); if (arr[cur] >= arr[par]) break; // 如果当前节点大于等于父节点,退出循环float tmp = arr[cur]; arr[cur] = arr[par]; arr[par] = tmp; cur = par;  // 交换当前节点和父节点, 更新 cur 为父节点索引}
}
void heaptifyDown(float *arr, int size, int idx) { // 比较当前节点与其左右子节点的大小。选择最小的子节点,如果当前节点大于这个子节点,则交换它们,并继续向下调整。int cur = idx;while (true) {int lc, rc, minidx = cur; getLeftChild(cur, &lc); getRightChild(cur, &rc);if (lc < size && arr[lc] < arr[minidx]) { minidx = lc; } // 找到当前节点和左子节点中的最小值if (rc < size && arr[rc] < arr[minidx]) { minidx = rc; } // 找到当前节点和右子节点中的最小值if (minidx == cur) break; // 如果当前节点是最小值,退出循环float tmp = arr[cur]; arr[cur] = arr[minidx]; arr[minidx] = tmp; cur = minidx;  // 交换当前节点和最小值节点, 更新 cur 为新的索引}
}
void pushHeap(float *arr, int *size, float x) {if ((*size) >= MAX_SIZE) return; // 如果堆已满,直接返回arr[*size] = x; (*size)++; // 将新元素放在堆的最后一个位置heaptifyUp(arr, (*size) - 1); // 重新调整堆
}
void popHeap(float *arr, int *size, float *val) {if ((*size) <= 0) return; // 如果堆为空,直接返回*val = arr[0]; arr[0] = arr[(*size) - 1]; // 将堆的最后一个元素放在堆顶(*size)--; heaptifyDown(arr, *size, 0); // 重新调整堆
}
void buildHeap(float *arr, int size){// 使用heaptifyDown的原因是,如果使用 heaptifyUp从树的底部向上调整,每个节点在最坏情况下可能需要一直移到树的根部(并且底部的节点数量多)。// 这意味着可能需要执行更多的比较和交换操作。而如果我们从上往下调整,每个节点最多只需要向下移动几层(通常是树的高度),这使得整体效率非常高。for (int i = size / 2 - 1; i >= 0; i--) heaptifyDown(arr, size, i); // 从最后一个非叶子节点(size/2 - 1)开始,向上调整堆;
}
void freeHeap(float **arr) { if (*arr) { free(*arr); *arr = NULL; } }
void top_k(float *arr, int size, float *res, int k) {if (k <= 0 || k > size) return;float *heap = (float *)malloc(sizeof(float) * k); int heap_size = 0;for (int i = 0; i < k; i++){ pushHeap(heap, &heap_size, arr[i]); } //  // 初始化堆,放入前 k 个元素for (int i = k; i < size; i++){ if (arr[i] > heap[0]) { float tmp; popHeap(heap, &heap_size, &tmp); pushHeap(heap, &heap_size, arr[i]); } } // 处理剩余的元素for (int i = 0; i < k; i++) { popHeap(heap, &heap_size, &res[k - 1 - i]); } // 将堆中的元素按降序输出到 res 数组freeHeap(&heap);
}
// parallel: 在构建堆时,并行化处理多个子树的下沉操作
void heap_sort(float *heap, int size){ // 堆排序,从大道小排序buildHeap( heap, size); // 构建小顶堆while (size > 1) {float tmp = heap[0]; heap[0] = heap[size - 1]; heap[size - 1] = tmp; size--; // 将堆顶元素与堆的最后一个元素交换,每次循环最小的元素被调整到末尾,堆的大小减1heaptifyDown(heap, size, 0); // 从堆顶开始重新调整堆}freeHeap(&heap);
} 大顶堆
//void initHeap(float **arr, int *size) { *arr = (float *)malloc(sizeof(float) * MAX_SIZE); *size = 0; } // 初始化堆的大小为0
//void peekTop(float *arr, int size, float *x) { if (size <= 0) return ; *x = arr[0]; }
//void getParent(int i, int *p_idx) { *p_idx = (i - 1) / 2; }
//void getLeftChild(int i, int *lc_idx) { *lc_idx = 2 * i + 1; }
//void getRightChild(int i, int *rc_idx) { *rc_idx = 2 * i + 2; }
//void heaptifyUp(float *arr, int idx){
//    int cur = idx;
//    while (cur > 0){  // 只要 cur 不是根节点
//        int par; getParent(cur, &par); if (arr[cur] < arr[par]) break; // 如果当前节点小于父节点,退出循环
//        float tmp = arr[cur]; arr[cur] = arr[par]; arr[par] = tmp; cur = par;  // 交换当前节点和父节点
//    }
//}
//void heaptifyDown(float *arr, int size, int idx){
//    int cur = idx;
//    while (true){
//        int lc, rc, maxidx = cur; getLeftChild(cur, &lc); getRightChild(cur, &rc);
//        if (lc < size && arr[lc] > arr[maxidx]) { maxidx = lc;} // 找到当前节点和左子节点中的最大值
//        if (rc < size && arr[rc] > arr[maxidx]) { maxidx = rc;} // 找到当前节点和右子节点中的最大值
//        if (maxidx == cur) break; // 如果当前节点是最大值,退出循环
//        float tmp = arr[cur]; arr[cur] = arr[maxidx]; arr[maxidx] = tmp; cur = maxidx; // 交换当前节点和最大值节点
//    }
//}
//void pushHeap(float *arr, int *size, float x){
//    if ((*size) >= MAX_SIZE) return; // 如果堆已满,直接返回
//    arr[*size] = x; (*size)++; // 将新元素放在堆的最后一个位置
//    heaptifyUp(arr, (*size) - 1); // 重新调整堆
//}
//void popHeap(float *arr, int *size, float *val){
//    if ((*size) <= 0) return; // 如果堆为空,直接返回
//    *val = arr[0];
//    arr[0] = arr[(*size) - 1]; // 将堆的最后一个元素放在堆顶
//    (*size)--;
//    heaptifyDown(arr, *size,0); // 重新调整堆
//}
//void freeHeap(float **arr) { if (*arr) { free(*arr); *arr = NULL; } }

这篇关于堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131599

相关文章

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文