R语言统计分析——回归中的异常观测值

2024-08-22 07:44

本文主要是介绍R语言统计分析——回归中的异常观测值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:R语言实战【第2版】

        一个全面的回归分析要覆盖对异常值的分析,包括离群点、高杠杆点和强影响点。这些数据点需要更深入的研究,因为它们在一定程度上与其他观点不同,可能对结果产生较大的负面影响。

1、离群点

        离群点是指那些模型预测效果不佳的观测点。它们通常有很大的、或正或负的残差(残差:实际值-预测值)。正的残差说明低估了响应值,负的残差则说明高估了响应值。

        我们可以使用Q-Q图的方式鉴别离群点car包中的qqPlot()函数(落在置信区间带以外的点可被认为是离群点),或者基础安装中的plot()函数。另外,我们还有一个粗糙的判断标准:标准化残差大于2或小于-2的点可能是离群点,需要特别关注。

        car包也提供了一种离群点的统计检验方法。outlierTest()函数可以求得最大标准化残差绝对值Bonferroni调整后的p值。

# 获取数据
states<-as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")])
# 拟合多元线性模型
fit<-lm(Murder~Population+Illiteracy+Income+Frost,data=states)
# 导入car包
library(car)
# 检验离群点
outlierTest(fit)
# 绘制Q-Q图
qqPlot(fit,simulate = TRUE,main="Q-Q Plot")

 

        根据结果,我们可以看出Nevada被判定为离群点(p=0.047544)。注意,该函数只是根据单个最大(或正或负)残差值的显著性来判断是否有离群点。若不显著,则说明数据集中没有离群点,若显著,则必须删除该离群点,然后再检验是否还有其他离群点。 

        上图也用Q-Q图的形式展示了离群点,Nevada点明显位于置信区间外。

2、高杠杆点

        高杠杆值观测点,即与其他预测变量有关的离群点。换句话说,它们是由许多异常的预测变量值组合起来的,与响应变量值没有关系

        高杠杆值得观测点可通过帽子统计量(hat statistic)判断。对于一个给定的数据集,帽子均值为p/n,其中p是模型估计的参数数目(包含截距项),n是样本量。一般来说,若观测点的帽子值大于帽子均值的2倍或3倍,就可以认定为高杠杆值点。帽子分布的绘制如下:

# 定义帽子函数
hat.plot<-function(fit){p<-length(coefficients(fit))n<-length(fitted(fit))plot(hatvalues(fit),main="Index Plot of Hat Values")abline(h=c(2,3)*p/n,col="red",lty=2)identify(1:n,hatvalues(fit),names(hatvalues(fit)))
}
# 展示帽子检验结果
hat.plot(fit)

        绘制的水平线标注即帽子均值的2倍和3倍的位置。 

# 展示强影响值数据点
p<-length(coefficients(fit))
n<-length(fitted(fit))
hatvalues(fit)[hatvalues(fit)>(2*p/n)]

        上面的是高杠杠值点,即具体的杠杆值。

        高杠杠值可能是强影响点,也可能不是,这要看它们是否是离群点。

3、强影响点

        强影响点,即对模型参数估计值影响有些比例失衡的点。例如,若移除模型的一个观测点时模型会发生巨大的改变,那么就需要检测一下数据中是否存在强影响点。

        有两种方法可以检测强影响点:Cook距离,或称D统计量,以及变量添加图(added variable plot)。一般来说,Cook's D值大于4/(n-k-1),则表明它是强硬点,其中n是样本量大小,k是预测变量数目。可以通过如下代码绘制Cook's D图形:

# 获取数据
states<-as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")])
# 拟合多元线性模型
fit<-lm(Murder~Population+Illiteracy+Income+Frost,data=states)
# 计算标准值4/(n-k-1)
cutoff<-4/(nrow(states)-length(coefficients(fit))-2)
# 绘制Cook's D图
plot(fit,which = 4,cook.levels=cutoff)
abline(h=cutoff,lty=2,col="red")

        通过上图可以看出Alaska、Hawaii和Nevada是强影响点。若删除这些点,则将导致回归模型截距项和斜率发生显著变化。当然,用D=1作为判断标准可能比用D=4/(n-k-1)更具有一般性,如果用D=1为判断标准,则本例的数据集中没有点是强影响点。

        Cook's D图有助于鉴别强影响点,但并不提供关于这些点如何影响模型的信息。变量添加图弥补了这个缺陷。所谓变量添加图,即对每一个预测变量Xk,绘制Xk在其他k-1个预测变量上回归的残差值相对于响应变量在其他k-1个预测变量上回归的残差值的关系图。car包中的avPlots()函数可以提供变量添加图:

# 加载car包
library(car)
# 绘制变量添加图
avPlots(fit,ask = FALSE)

        图中的直线表示相应预测变量的实际回归系数。

4、综合显示异常值

        我们可以利用car包中的influencePlot()函数,将离群点、杠杆值和强影响点的信息整合到一幅图形中。

# 加载car包
library(car)
# 绘制异常值综合信息图
influencePlot(fit,main="Influence Plot",sub="Circle size is proportional to Cook's distance")

        纵坐标显示的是标准化残差,纵坐标超过+2或-2时,可以被认为离群点:所以Nevada和Rhode Island是离群点。

       水平轴超过0.2或0.3时,可以被认为有高杠杆值California为高杠杆值点。

        图中的圆越大颜色越深,则其为 Cook's D值越大:Alaska和Nevada为强影响点。

这篇关于R语言统计分析——回归中的异常观测值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095661

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

C语言:柔性数组

数组定义 柔性数组 err int arr[0] = {0}; // ERROR 柔性数组 // 常见struct Test{int len;char arr[1024];} // 柔性数组struct Test{int len;char arr[0];}struct Test *t;t = malloc(sizeof(Test) + 11);strcpy(t->arr,

C语言指针入门 《C语言非常道》

C语言指针入门 《C语言非常道》 作为一个程序员,我接触 C 语言有十年了。有的朋友让我推荐 C 语言的参考书,我不敢乱推荐,尤其是国内作者写的书,往往七拼八凑,漏洞百出。 但是,李忠老师的《C语言非常道》值得一读。对了,李老师有个官网,网址是: 李忠老师官网 最棒的是,有配套的教学视频,可以试看。 试看点这里 接下来言归正传,讲解指针。以下内容很多都参考了李忠老师的《C语言非