fast rcnn 训练自己的数据集(编译环境配置)

2024-08-21 19:38

本文主要是介绍fast rcnn 训练自己的数据集(编译环境配置),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FastRCNN 训练自己数据集 (1编译配置)

转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/
http://github.com/YihangLou/fast-rcnn-train-another-dataset 这是楼主在github上修改的几个文件的链接

FastRCNN是Ross Girshick在RCNN的基础上增加了Multi task training整个的训练过程和测试过程比RCNN快了许多。别的一些细节不展开,过几天会上传Fast RCNN的论文笔记。FastRCNN mAP性能上略有上升。Fast RCNN中,提取OP的过程和训练过程仍然是分离的。因此我们在训练过程中,需要用OP的方法先把图像OP提取好,再送入Fast RCNN中训练,在检测过程中也是如此需要先把相应的测试图像的OP提取出来送入检测。

首先我要说的是如何安装Fast RCNN环境,具体的流程在Ross Girshick的Github上有,他里面主要是讲解了如何安装和使用。我会稍微提到这一部分内容,主要讲解,如果要训练自己的数据,应该修改那些地方,并把我自己训练的过程跟大家分享一下。

1.当然是Git clone一下Ross的工程啦

这里给出Github的链接http://github.com/rbgirshick/fast-rcnn
首先根据他的提示

Make sure to clone with --recursive
git clone --recursive http://github.com/rbgirshick/fast-rcnn.git

这里不要忘了加--recursive

2.在这里简单介绍一下工程目录

首先工程的根目录简单的称为 FRCN_ROOT,可以看到根目录下有以下几个文件夹

  • caffe-fast-rcnn

    这里是caffe框架目录

  • data

    用来存放pretrained模型 比如imagenet上的,以及读取文件的cache缓存

  • experiments

    存放配置文件以及运行的log文件,另外这个目录下有scripts 用来获取imagenet的模型,以及作者训练好的fast rcnn模型,以及相应的pascal-voc数据集

  • lib

    用来存放一些python接口文件,如其下的datasets主要负责数据库读取 config负责cnn一些训练的配置选项

  • matlab

    放置matlab与python的接口,用matlab来调用实现detection

  • models

    里面存放了三个模型文件,小型网络的CaffeNet 大型网络VGG16 中型网络VGG_CNN_M_1024

  • output

    这里存放的是训练完成后的输出目录,默认会在default文件夹下

  • tools

    里面存放的是训练和测试的Python文件

3.编译Cython module

cd $FRCN_ROOT/lib
make

进入lib目录直接make就可以了

4.编译Caffe and pycaffe

cd $FRCN_ROOT/caffe-fast-rcnn
make -j8 && make pycaffe

这里需要注意的是你直接make -j8 && make pycaffe是会报错的,

可以看到图中是是没有Makefile.config文件,但是作者有一个Makefile.config.example文件,你需要复制它一下然后重命名为Makefile.config

需要注意的是里面还有几个配置需要添加

  • 打开 USE_CUDNN = 1,这个选项默认情况下时关闭的,让CUDA支持DNN

  • 打开 WITH_PYTHON_LAYER = 1,这个在默认情况下也是关闭的,FastRCNN需要支持Python接口,因此需要打开

  • Fast RCNN需要hdf5的支持,这个根据自己的Linux里的库文件安装路径添加,不清楚的可以find一下,不过一般情况下,INCLUDE_DIRS 应该添加上 /usr/include/hdf5/serial LIBRARY_DIRS 添加上/usr/lib/x86_x64-linux-gnu/hdf5/serial
  • 另外把USE_PKG_CONFIG = 1 记得打开,要不然会找不到一些库文件,PKG是linux用来管理库文件

这几个是需要在Makefile.config.example中修改的,最好直接copy一个再修改。
另外还有一个需要注意的地方是,当初楼主的linux版本太高,ubuntu这玩意更新太快了,boost库的版本太高,Fast RCNN里面用的是1.55版本的boost库,当时我电脑上是1.59,会出现接口不兼容,记得是废弃了几个接口,编译报错,装回1.55的就可以了

5.下载相应的模型文件

Ross给出的操作是这样的,其实我不推荐这么弄,因为直接用wget去下载的速度比较慢,我们可以打开里面的shell文件,把url粘贴出来,到迅雷里面下载,几分钟就好了

cd $FRCN_ROOT
./data/scripts/fetch_fast_rcnn_models.sh

这里以相应的 imagenet_model为例,你到目录下可以看到3个shell文件,分别是fetch_fast_rcnn_models.s h,fetch_imagenet_models.sh,fetch_selective_search_data.sh,第一是作者训练好的fast_rcnn模型,第二个是imagenet_model上预训练好的模型,第三个对应着的是作者基于Pascal VOC数据集提取的selective_search预选框。如果想要看一下fast rcnn的效果,可以直接加载Ross训练好的fast_rcnn模型,如果要自己训练的话,记得加载imagenet模型

这里是imagenet_model的shell文件,看家里面的URL了没,最后的URL链接就是这个链接再加上FILE变量,链接,你直接把它链接起来,复制到迅雷中下载就可以了,速度灰常快,直接下载的话炒鸡慢啊。
下在之后记得放到data/目录下去解压哦,

6.运行网络和加载模型文件

在tools下面有个demo.py文件

cd $FRCN_ROOT
./tools/demo.py

就可以直接运行,记得看一下里面的参数,这里对显卡有一定的要求,Ross说必须是3G的显存以上才可以跑的动哦,里面有3个大小的网络caffenet是最小的,有显卡应该就能跑起来,vgg_cnn_m_1024是一个中型网络,vgg16是大型网络,后两个得看显卡的显存大小才能跑起,显存不够启动会报错的。

如果在cpu模式下的话速度是灰常慢的,GPU模式下大概0.2秒左右。

对了demo里面都是有显示的函数的,如果你是在linux终端下没有输出设备运行是会报错的

正确运行的结果如下
里面有两个图片检测效果,这里放一张

7.关于训练自己的数据样本

请等待下一篇 过两天就放上来 FastRCNN 训练自己数据集 (2接口修改训练)

这篇关于fast rcnn 训练自己的数据集(编译环境配置)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094096

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

mybatis映射器配置小结

《mybatis映射器配置小结》本文详解MyBatis映射器配置,重点讲解字段映射的三种解决方案(别名、自动驼峰映射、resultMap),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录select中字段的映射问题使用SQL语句中的别名功能使用mapUnderscoreToCame

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同