fast rcnn 训练自己的数据集(编译环境配置)

2024-08-21 19:38

本文主要是介绍fast rcnn 训练自己的数据集(编译环境配置),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FastRCNN 训练自己数据集 (1编译配置)

转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/
http://github.com/YihangLou/fast-rcnn-train-another-dataset 这是楼主在github上修改的几个文件的链接

FastRCNN是Ross Girshick在RCNN的基础上增加了Multi task training整个的训练过程和测试过程比RCNN快了许多。别的一些细节不展开,过几天会上传Fast RCNN的论文笔记。FastRCNN mAP性能上略有上升。Fast RCNN中,提取OP的过程和训练过程仍然是分离的。因此我们在训练过程中,需要用OP的方法先把图像OP提取好,再送入Fast RCNN中训练,在检测过程中也是如此需要先把相应的测试图像的OP提取出来送入检测。

首先我要说的是如何安装Fast RCNN环境,具体的流程在Ross Girshick的Github上有,他里面主要是讲解了如何安装和使用。我会稍微提到这一部分内容,主要讲解,如果要训练自己的数据,应该修改那些地方,并把我自己训练的过程跟大家分享一下。

1.当然是Git clone一下Ross的工程啦

这里给出Github的链接http://github.com/rbgirshick/fast-rcnn
首先根据他的提示

Make sure to clone with --recursive
git clone --recursive http://github.com/rbgirshick/fast-rcnn.git

这里不要忘了加--recursive

2.在这里简单介绍一下工程目录

首先工程的根目录简单的称为 FRCN_ROOT,可以看到根目录下有以下几个文件夹

  • caffe-fast-rcnn

    这里是caffe框架目录

  • data

    用来存放pretrained模型 比如imagenet上的,以及读取文件的cache缓存

  • experiments

    存放配置文件以及运行的log文件,另外这个目录下有scripts 用来获取imagenet的模型,以及作者训练好的fast rcnn模型,以及相应的pascal-voc数据集

  • lib

    用来存放一些python接口文件,如其下的datasets主要负责数据库读取 config负责cnn一些训练的配置选项

  • matlab

    放置matlab与python的接口,用matlab来调用实现detection

  • models

    里面存放了三个模型文件,小型网络的CaffeNet 大型网络VGG16 中型网络VGG_CNN_M_1024

  • output

    这里存放的是训练完成后的输出目录,默认会在default文件夹下

  • tools

    里面存放的是训练和测试的Python文件

3.编译Cython module

cd $FRCN_ROOT/lib
make

进入lib目录直接make就可以了

4.编译Caffe and pycaffe

cd $FRCN_ROOT/caffe-fast-rcnn
make -j8 && make pycaffe

这里需要注意的是你直接make -j8 && make pycaffe是会报错的,

可以看到图中是是没有Makefile.config文件,但是作者有一个Makefile.config.example文件,你需要复制它一下然后重命名为Makefile.config

需要注意的是里面还有几个配置需要添加

  • 打开 USE_CUDNN = 1,这个选项默认情况下时关闭的,让CUDA支持DNN

  • 打开 WITH_PYTHON_LAYER = 1,这个在默认情况下也是关闭的,FastRCNN需要支持Python接口,因此需要打开

  • Fast RCNN需要hdf5的支持,这个根据自己的Linux里的库文件安装路径添加,不清楚的可以find一下,不过一般情况下,INCLUDE_DIRS 应该添加上 /usr/include/hdf5/serial LIBRARY_DIRS 添加上/usr/lib/x86_x64-linux-gnu/hdf5/serial
  • 另外把USE_PKG_CONFIG = 1 记得打开,要不然会找不到一些库文件,PKG是linux用来管理库文件

这几个是需要在Makefile.config.example中修改的,最好直接copy一个再修改。
另外还有一个需要注意的地方是,当初楼主的linux版本太高,ubuntu这玩意更新太快了,boost库的版本太高,Fast RCNN里面用的是1.55版本的boost库,当时我电脑上是1.59,会出现接口不兼容,记得是废弃了几个接口,编译报错,装回1.55的就可以了

5.下载相应的模型文件

Ross给出的操作是这样的,其实我不推荐这么弄,因为直接用wget去下载的速度比较慢,我们可以打开里面的shell文件,把url粘贴出来,到迅雷里面下载,几分钟就好了

cd $FRCN_ROOT
./data/scripts/fetch_fast_rcnn_models.sh

这里以相应的 imagenet_model为例,你到目录下可以看到3个shell文件,分别是fetch_fast_rcnn_models.s h,fetch_imagenet_models.sh,fetch_selective_search_data.sh,第一是作者训练好的fast_rcnn模型,第二个是imagenet_model上预训练好的模型,第三个对应着的是作者基于Pascal VOC数据集提取的selective_search预选框。如果想要看一下fast rcnn的效果,可以直接加载Ross训练好的fast_rcnn模型,如果要自己训练的话,记得加载imagenet模型

这里是imagenet_model的shell文件,看家里面的URL了没,最后的URL链接就是这个链接再加上FILE变量,链接,你直接把它链接起来,复制到迅雷中下载就可以了,速度灰常快,直接下载的话炒鸡慢啊。
下在之后记得放到data/目录下去解压哦,

6.运行网络和加载模型文件

在tools下面有个demo.py文件

cd $FRCN_ROOT
./tools/demo.py

就可以直接运行,记得看一下里面的参数,这里对显卡有一定的要求,Ross说必须是3G的显存以上才可以跑的动哦,里面有3个大小的网络caffenet是最小的,有显卡应该就能跑起来,vgg_cnn_m_1024是一个中型网络,vgg16是大型网络,后两个得看显卡的显存大小才能跑起,显存不够启动会报错的。

如果在cpu模式下的话速度是灰常慢的,GPU模式下大概0.2秒左右。

对了demo里面都是有显示的函数的,如果你是在linux终端下没有输出设备运行是会报错的

正确运行的结果如下
里面有两个图片检测效果,这里放一张

7.关于训练自己的数据样本

请等待下一篇 过两天就放上来 FastRCNN 训练自己数据集 (2接口修改训练)

这篇关于fast rcnn 训练自己的数据集(编译环境配置)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094096

相关文章

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件