【数模修炼之旅】06 决策树分类模型 深度解析(教程+代码)

本文主要是介绍【数模修炼之旅】06 决策树分类模型 深度解析(教程+代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【数模修炼之旅】06 决策树分类模型 深度解析(教程+代码)

接下来 C君将会用至少30个小节来为大家深度解析数模领域常用的算法,大家可以关注这个专栏,持续学习哦,对于大家的能力提高会有极大的帮助。

1 决策树分类模型介绍及应用

这个监督式学习算法通常被用于分类问题。令人惊奇的是,它同时适用于分类变量和连续因变量。在这个算法中,我们将总体分成两个或更多的同类群。这是根据最重要的属性或者自变量来分成尽可能不同的组别。

这个算法是一些高阶算法的基础,比如随机森林、xgboost等算法,是大家需要掌握的基础算法之一。

决策树的结构直观易懂,类似于一棵倒置的树,其中每个内部节点表示一个特征上的条件判断,每个分支表示条件的结果,而每个叶节点表示一个类别或预测值。

1.1 决策树分类模型的基本原理

节点划分:

    • 决策树通过递归地选择最能分割数据的特征来划分节点。常用的划分标准包括信息增益、基尼指数和增益比等。
    • 信息增益:衡量在某个特征上划分数据后信息的不确定性减少的程度。
    • 基尼指数:衡量数据集中不同类别样本的混杂度,基尼指数越低,样本纯度越高。

生成过程:

    • 选择最佳特征:从根节点开始,选择一个特征,基于这个特征将数据集分成子集。
    • 递归划分:对每个子集继续进行相同的划分过程,直到满足停止条件,如达到最大深度、叶节点样本数过少或信息增益不足。
    • 树的剪枝:为了防止过拟合,决策树可以通过剪枝技术去掉一些分支,保留简洁的模型。

预测过程:

    • 对于一个新样本,从根节点开始,依据样本的特征值,沿着决策树进行条件判断,直至到达叶节点,叶节点的类别即为预测结果。

1.2 决策树分类模型在数模中的应用

2 决策树分类模型的基本步骤

决策树模型的基本步骤包括数据准备、特征选择、树的生成、剪枝、以及最终的预测。以下是这些步骤的详细讲解:

1. 数据准备

步骤:

  1. 收集数据:首先需要收集包含输入特征和目标变量的数据集。输入特征是用于分类或回归的变量,目标变量是要预测的类别或数值。
  2. 处理缺失值:如果数据集中存在缺失值,需要通过删除、插值等方法进行处理。
  3. 特征编码:对于非数值型特征,如类别型变量,可以使用独热编码(One-Hot Encoding)或标签编码(Label Encoding)将其转换为数值形式。

示例:

假设我们有一个包含“年龄”、“收入”、“已婚”三个特征的数据集,以及一个“是否购买产品”的目标变量。

2. 特征选择

步骤:

  1. 选择分裂标准:根据任务需求,选择适当的分裂标准(例如信息增益、基尼指数、增益比)。这个标准用于评估在某个特征上分裂数据后,子集的纯度如何。
  2. 计算特征的分裂标准值:针对每个特征,计算其分裂标准值,选择具有最佳分裂标准值的特征进行分裂。

示例:

如果选择信息增益作为标准,计算每个特征的信息增益,选择信息增益最大的特征进行分裂。

3. 树的生成

步骤:

  1. 创建根节点:从根节点开始,根据选择的最佳特征进行第一次分裂,将数据集划分为若干子集。
  2. 递归分裂:对于每个子集,重复特征选择和分裂的过程,生成新的节点。这个过程递归进行,直到满足停止条件(如达到最大深度、信息增益低于某个阈值、子集的样本数量过少等)。
  3. 生成叶节点:当无法再继续分裂时,当前节点被标记为叶节点,叶节点的值为目标变量的类别或回归值。

示例:

假设“收入”是最佳分裂特征,根节点根据“收入”将数据集分为“高收入”和“低收入”两个子集,然后继续对每个子集进行递归分裂。

4. 剪枝(可选)

步骤:

  1. 预剪枝:在树生成的过程中,通过设置参数(如最大深度、最小样本数等)来限制树的生长,防止过拟合。
  2. 后剪枝:在生成完树之后,对树进行修剪,移除一些分支,以减少模型的复杂度。常见的后剪枝方法包括“最小错误率剪枝”和“成本复杂度剪枝”。

示例:

如果一棵决策树的某个分支只处理了极少数的样本,且对模型预测贡献不大,剪枝可以将这个分支删除,以简化模型。

5. 模型预测

步骤:

  1. 样本分类:将新的样本从根节点开始,按照特征条件进行判断,沿着树的分支进行路径选择,直到到达叶节点。叶节点的类别或数值即为预测结果。
  2. 评估模型:使用测试数据集评估决策树的性能,可以使用准确率、精度、召回率、F1得分等指标来衡量分类任务的效果,或使用均方误差、R平方等指标来衡量回归任务的效果。

示例:

对于一个新样本“年龄=30岁,收入=高,已婚=是”,根据决策树的结构,从根节点出发,依次判断特征,最后预测该样本的目标变量(如“是否购买产品”)。

3 决策树分类模型代码(matlab+python)

3.1 python

#Import Library#Import other necessary libraries like pandas, numpy...from sklearn importtree#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset#Create tree objectmodel=tree.DecisionTreeClassifier(criterion='gini')#for classification, here you can change the algorithm as gini or entropy (information gain) by default it is gini# model = tree.DecisionTreeRegressor() forregression# Train the model using the training sets andcheck scoremodel.fit(X,y)model.score(X,y)#Predictpredicted=model.predict(x_test)R codelibrary(rpart)x# grow treefit#Predict Outputpredicted= predict(fit,x_test) 

3.2 matlab

% 数据准备
X = [5.1 3.5 1.4 0.2; 4.9 3.0 1.4 0.2; 4.7 3.2 1.3 0.2; 4.6 3.1 1.5 0.2];
Y = [1; 1; 1; 1];% 训练决策树模型
tree = fitctree(X, Y, 'MaxDepth', 3, 'MinLeafSize', 5);% 新样本数据
newData = [5.0 3.6 1.4 0.2];% 进行预测
predictedClass = predict(tree, newData);% 交叉验证
cvTree = crossval(tree);
cvLoss = kfoldLoss(cvTree);% 可视化决策树
view(tree, 'Mode', 'graph');% 显示预测结果和交叉验证误差
disp('预测结果:');
disp(predictedClass);
disp('交叉验证误差:');
disp(cvLoss);

需要参加数模竞赛的同学,可以看我的这个名片,会有最新的助攻哦:(大型比赛前会对名片进行更新)

这篇关于【数模修炼之旅】06 决策树分类模型 深度解析(教程+代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094016

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名