【数模修炼之旅】06 决策树分类模型 深度解析(教程+代码)

本文主要是介绍【数模修炼之旅】06 决策树分类模型 深度解析(教程+代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【数模修炼之旅】06 决策树分类模型 深度解析(教程+代码)

接下来 C君将会用至少30个小节来为大家深度解析数模领域常用的算法,大家可以关注这个专栏,持续学习哦,对于大家的能力提高会有极大的帮助。

1 决策树分类模型介绍及应用

这个监督式学习算法通常被用于分类问题。令人惊奇的是,它同时适用于分类变量和连续因变量。在这个算法中,我们将总体分成两个或更多的同类群。这是根据最重要的属性或者自变量来分成尽可能不同的组别。

这个算法是一些高阶算法的基础,比如随机森林、xgboost等算法,是大家需要掌握的基础算法之一。

决策树的结构直观易懂,类似于一棵倒置的树,其中每个内部节点表示一个特征上的条件判断,每个分支表示条件的结果,而每个叶节点表示一个类别或预测值。

1.1 决策树分类模型的基本原理

节点划分:

    • 决策树通过递归地选择最能分割数据的特征来划分节点。常用的划分标准包括信息增益、基尼指数和增益比等。
    • 信息增益:衡量在某个特征上划分数据后信息的不确定性减少的程度。
    • 基尼指数:衡量数据集中不同类别样本的混杂度,基尼指数越低,样本纯度越高。

生成过程:

    • 选择最佳特征:从根节点开始,选择一个特征,基于这个特征将数据集分成子集。
    • 递归划分:对每个子集继续进行相同的划分过程,直到满足停止条件,如达到最大深度、叶节点样本数过少或信息增益不足。
    • 树的剪枝:为了防止过拟合,决策树可以通过剪枝技术去掉一些分支,保留简洁的模型。

预测过程:

    • 对于一个新样本,从根节点开始,依据样本的特征值,沿着决策树进行条件判断,直至到达叶节点,叶节点的类别即为预测结果。

1.2 决策树分类模型在数模中的应用

2 决策树分类模型的基本步骤

决策树模型的基本步骤包括数据准备、特征选择、树的生成、剪枝、以及最终的预测。以下是这些步骤的详细讲解:

1. 数据准备

步骤:

  1. 收集数据:首先需要收集包含输入特征和目标变量的数据集。输入特征是用于分类或回归的变量,目标变量是要预测的类别或数值。
  2. 处理缺失值:如果数据集中存在缺失值,需要通过删除、插值等方法进行处理。
  3. 特征编码:对于非数值型特征,如类别型变量,可以使用独热编码(One-Hot Encoding)或标签编码(Label Encoding)将其转换为数值形式。

示例:

假设我们有一个包含“年龄”、“收入”、“已婚”三个特征的数据集,以及一个“是否购买产品”的目标变量。

2. 特征选择

步骤:

  1. 选择分裂标准:根据任务需求,选择适当的分裂标准(例如信息增益、基尼指数、增益比)。这个标准用于评估在某个特征上分裂数据后,子集的纯度如何。
  2. 计算特征的分裂标准值:针对每个特征,计算其分裂标准值,选择具有最佳分裂标准值的特征进行分裂。

示例:

如果选择信息增益作为标准,计算每个特征的信息增益,选择信息增益最大的特征进行分裂。

3. 树的生成

步骤:

  1. 创建根节点:从根节点开始,根据选择的最佳特征进行第一次分裂,将数据集划分为若干子集。
  2. 递归分裂:对于每个子集,重复特征选择和分裂的过程,生成新的节点。这个过程递归进行,直到满足停止条件(如达到最大深度、信息增益低于某个阈值、子集的样本数量过少等)。
  3. 生成叶节点:当无法再继续分裂时,当前节点被标记为叶节点,叶节点的值为目标变量的类别或回归值。

示例:

假设“收入”是最佳分裂特征,根节点根据“收入”将数据集分为“高收入”和“低收入”两个子集,然后继续对每个子集进行递归分裂。

4. 剪枝(可选)

步骤:

  1. 预剪枝:在树生成的过程中,通过设置参数(如最大深度、最小样本数等)来限制树的生长,防止过拟合。
  2. 后剪枝:在生成完树之后,对树进行修剪,移除一些分支,以减少模型的复杂度。常见的后剪枝方法包括“最小错误率剪枝”和“成本复杂度剪枝”。

示例:

如果一棵决策树的某个分支只处理了极少数的样本,且对模型预测贡献不大,剪枝可以将这个分支删除,以简化模型。

5. 模型预测

步骤:

  1. 样本分类:将新的样本从根节点开始,按照特征条件进行判断,沿着树的分支进行路径选择,直到到达叶节点。叶节点的类别或数值即为预测结果。
  2. 评估模型:使用测试数据集评估决策树的性能,可以使用准确率、精度、召回率、F1得分等指标来衡量分类任务的效果,或使用均方误差、R平方等指标来衡量回归任务的效果。

示例:

对于一个新样本“年龄=30岁,收入=高,已婚=是”,根据决策树的结构,从根节点出发,依次判断特征,最后预测该样本的目标变量(如“是否购买产品”)。

3 决策树分类模型代码(matlab+python)

3.1 python

#Import Library#Import other necessary libraries like pandas, numpy...from sklearn importtree#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset#Create tree objectmodel=tree.DecisionTreeClassifier(criterion='gini')#for classification, here you can change the algorithm as gini or entropy (information gain) by default it is gini# model = tree.DecisionTreeRegressor() forregression# Train the model using the training sets andcheck scoremodel.fit(X,y)model.score(X,y)#Predictpredicted=model.predict(x_test)R codelibrary(rpart)x# grow treefit#Predict Outputpredicted= predict(fit,x_test) 

3.2 matlab

% 数据准备
X = [5.1 3.5 1.4 0.2; 4.9 3.0 1.4 0.2; 4.7 3.2 1.3 0.2; 4.6 3.1 1.5 0.2];
Y = [1; 1; 1; 1];% 训练决策树模型
tree = fitctree(X, Y, 'MaxDepth', 3, 'MinLeafSize', 5);% 新样本数据
newData = [5.0 3.6 1.4 0.2];% 进行预测
predictedClass = predict(tree, newData);% 交叉验证
cvTree = crossval(tree);
cvLoss = kfoldLoss(cvTree);% 可视化决策树
view(tree, 'Mode', 'graph');% 显示预测结果和交叉验证误差
disp('预测结果:');
disp(predictedClass);
disp('交叉验证误差:');
disp(cvLoss);

需要参加数模竞赛的同学,可以看我的这个名片,会有最新的助攻哦:(大型比赛前会对名片进行更新)

这篇关于【数模修炼之旅】06 决策树分类模型 深度解析(教程+代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094016

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图