线性回归(Linear Regression)原理详解及Python代码示例

2024-06-24 09:44

本文主要是介绍线性回归(Linear Regression)原理详解及Python代码示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、线性回归原理详解

        线性回归是一种基本的统计方法,用于预测因变量(目标变量)与一个或多个自变量(特征变量)之间的线性关系。线性回归模型通过拟合一条直线(在多变量情况下是一条超平面)来最小化预测值与真实值之间的误差。

1. 线性回归模型

        对于单变量线性回归,模型的表达式为:

4736001b906240d9ae7c63ee8a9e102d.png

        其中:

  • y是目标变量。
  • x是特征变量。
  • β0是截距项(偏置)。
  • β1是特征变量的系数。

        对于多变量线性回归,模型的表达式为:

7a34a45745054fe6ba3ed51e68cc001e.png

        其中:

  • y是目标变量。
  • x1,x2,…,xn是多个特征变量。
  • β0是截距项(偏置)。
  • β1,β2,…,βn是各特征变量的系数。

2. 最小二乘法(Ordinary Least Squares, OLS)

        线性回归通过最小二乘法来估计模型参数,即最小化所有预测误差的平方和。对于给定的训练数据集 (xi,yi),目标是找到使得误差平方和最小的 β值。

        误差平方和(损失函数)的公式为:

6fb6e74ddf0841f699893c7315f80cfa.png

        其中 m是样本数量,yi^​ 是第 i个样本的预测值,通过最小化这个损失函数,可以得到最优的模型参数 β。

二、Python代码示例

下面是使用Python实现线性回归的代码示例。我们将使用scikit-learn库来构建和训练线性回归模型,并预测一些数据。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建线性回归模型并进行训练
lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)# 进行预测
y_pred = lin_reg.predict(X_test)# 打印模型参数
print("截距(Intercept):", lin_reg.intercept_)
print("系数(Coefficients):", lin_reg.coef_)# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("均方误差(MSE):", mse)
print("决定系数(R^2):", r2)# 绘制回归直线
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted')
plt.xlabel('Feature')
plt.ylabel('Target')
plt.title('Linear Regression')
plt.legend()
plt.show()

代码解释:

  1. 数据生成:使用numpy生成随机数据集,特征变量 X 和目标变量 y 满足线性关系并添加一些噪声。
  2. 数据划分:将数据集划分为训练集和测试集,比例为80%训练和20%测试。
  3. 模型训练:使用scikit-learnLinearRegression类创建线性回归模型,并在训练集上进行训练。
  4. 模型预测:使用训练好的模型在测试集上进行预测。
  5. 模型评估:计算均方误差(MSE)和决定系数(R²)来评估模型性能。
  6. 结果可视化:绘制实际值和预测值的散点图以及回归直线。

 

这篇关于线性回归(Linear Regression)原理详解及Python代码示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089792

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig