自动驾驶规划中使用 OSQP 进行二次规划 代码原理详细解读

本文主要是介绍自动驾驶规划中使用 OSQP 进行二次规划 代码原理详细解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 问题描述

什么是稀疏矩阵 CSC 形式

QP Path Planning 问题

1. Cost function

1.1 The first term:

1.2 The second term:

1.3 The thrid term:

1.4 The forth term:

对 Qx''' 矩阵公式的验证

整体 Q 矩阵(就是 P 矩阵,二次项的权重矩阵)

整体 P 矩阵的形式如下:

目标函数中的线性项部分,即 q 矩阵的构建

计算 q 矩阵的代码块如下:

2. Constraints

2.1 不等式约束

2.2 连续性约束

Equality constraints

不等式约束的上下边界条件为:

上下边界条件是如何计算的?

二阶导边界极值的计算:

三阶导边界极值的计算

最后,A 矩阵为:

仿射矩阵 A


1 问题描述

典型的优化问题可以用以下的数学表达式来描述:

其中,P 是一个 n x n 的半正定矩阵, x 为 n 维向量,q 为 m x n 的矩阵。

需要注意的是,二次规划只在代价函数为凸函数的时候能够收敛到最优解,因此这需要 P 矩阵为半正定矩阵,这是非常重要的一个条件。这反映在 Apollo 中的规划算法则为需要进行求解的空间为凸空间,这样二次规划才能收敛到一条最优 Path。

上面的表述源自:Apollo 二次规划算法(piecewise jerk path optimizer)解析

什么是半正定矩阵?什么是正定矩阵?

设 A 为实对称矩阵,若对于每个非零实向量 X,都有 X'AX ≥ 0,则称 A 为半正定矩阵,称 X'AX 为半正定二次型。(其中,X'表示 X 的转置。)

注 :

在 OSQP 中,对上述的数据用结构体 OSQPData 进行封装,其定义如下:

// the location of file: /usr/local/include/osqp/types.h

typedef struct {

c_int n; ///< number of variables n

c_int m; ///< number of constraints m

csc *P; ///< the upper triangular part of the quadratic cost matrix P

csc *A; ///< linear constraints matrix A in csc format (size m x n)

c_float *q; ///< dense array for linear part of cost function (size n)

c_float *l; ///< dense array for lower bound (size m)

c_float *u; ///< dense array for upper bound (size m)

} OSQPData;

其中,P 和 A 都是以稀疏矩阵 CSC 的形式进行存储的。

什么是稀疏矩阵 CSC 形式

CSC - Compressed sparse column (CSC or CCS)

稀疏矩阵和稠密矩阵 - 看矩阵中非零元素占所有元素的比例

在矩阵中,若数值为 0 的元素数目远远多于非 0 元素的数目,并且非 0 元素分布没有规律时,则称该矩阵为稀疏矩阵;与之相反,若非 0 元素数目占大多数时,则称该矩阵为稠密矩阵。定义非零元素的总数比上矩阵所有元素的总数为矩阵的稠密度。

稀疏矩阵的常规方式

下面是最常见的一种,也很好理解,(row,col) 指向矩阵非零元素的索引,data 里为该元素的值。

稀疏矩阵的 CSC 形式 - csc_matrix

按列压缩 Compressed sparse column,顾名思义将每一列出现的非零元素的个数统计后放好。

如何保证规划算法求解的空间为凸空间?

QP Path Planning 问题

QP 问题的标准形式(下面是常见的两种表示方法):

1. Cost function

论文中的 cost 函数实际上是如下的形式:

优化变量的形式是:

Cost function 也可以写成下面这种形式:

我们注意到第一项和第二项的内容似乎相同,但其实是有所区别的。我们通过下图来解释。

可以看到,我们要规划的离散点曲线是在 SL 坐标系下进行的。所以第一项惩罚的横向偏移也就是偏移 s 的法向的距离,可以理解为关于车道中心线的偏移。而第四项关于参考线的偏移,则是考虑了静态和低速障碍物生成的一条参考线,第四项所计算的偏移其实是关于参考线的偏移。我们可以这样理解这两项:我们规划的最优轨迹要尽量贴合原来的车道中心线,同时还要尽量贴合能够避障的参考线。

1.1 The first term:

一共有 n 个点:

假如有四个点需要优化,为 x0, x1, ... x3,则矩阵为:

1.2 The second term:

1.3 The thrid term:

1.4 The forth term:

对 Qx''' 矩阵公式的验证

假设有四个点,x1, x2... x3,则:

使用上面的 matrix form:

说明上述的 Qx''' 的公式是正确的。

整体 Q 矩阵(就是 P 矩阵,二次项的权重矩阵)

所以,cost function 的 Q 矩阵为:

整体 P 矩阵的形式如下:
 

注意:代码中 Apollo 中的 Q 矩阵(代码中是 P 矩阵)形式与上述推导有一定的差异:

Apollo 6.0 代码中的 P 矩阵形式如下:

参见这篇文章:

https://zhuanlan.zhihu.com/p/480298921

目标函数的形式如下:

下面就是代码中的 P 矩阵的实际形式:

构建 P 矩阵的函数:

void PiecewiseJerkPathProblem::CalculateKernel(std::vector<c_float>* P_data,

                                               std::vector<c_int>* P_indices,

                                               std::vector<c_int>* P_indptr)

P 矩阵的零阶导数(蓝色)部分对应的代码块:

// x(i)^2 * (w_x + w_x_ref[i]), w_x_ref might be a uniform value for all x(i)

  // or piecewise values for different x(i)

  // P 矩阵的零阶导数部分

  for (int i = 0; i < n - 1; ++i) {

    columns[i].emplace_back(i, (weight_x_ + weight_x_ref_vec_[i]) /

                                   (scale_factor_[0] * scale_factor_[0])); // scale_factor - 缩放系数

    ++value_index;

  }

  // x(n-1)^2 * (w_x + w_x_ref[n-1] + w_end_x) - 最后一个节点增加了一个末状态的权重 w_end_x

  columns[n - 1].emplace_back(

      n - 1, (weight_x_ + weight_x_ref_vec_[n - 1] + weight_end_state_[0]) /

                 (scale_factor_[0] * scale_factor_[0]));

  ++value_index;

P 矩阵的一阶导数(粉色)部分对应的代码块:

  // x(i)'^2 * w_dx - P 矩阵的一阶导数部分

  for (int i = 0; i < n - 1; ++i) {

    columns[n + i].emplace_back(

        n + i, weight_dx_ / (scale_factor_[1] * scale_factor_[1]));

    ++value_index;

  }

  // x(n-1)'^2 * (w_dx + w_end_dx)

  columns[2 * n - 1].emplace_back(2 * n - 1,

                                  (weight_dx_ + weight_end_state_[1]) /

                                      (scale_factor_[1] * scale_factor_[1]));

  ++value_index;

P 矩阵的二阶导数(绿色)部分对应的代码块:

 auto delta_s_square = delta_s_ * delta_s_;

  // P 矩阵的二阶导数部分的第一个对角线元素

  // x(i)''^2 * (w_ddx + 2 * w_dddx / delta_s^2)

  columns[2 * n].emplace_back(2 * n,

                              (weight_ddx_ + weight_dddx_ / delta_s_square) /

                                  (scale_factor_[2] * scale_factor_[2]));

  ++value_index;

  // P 矩阵的二阶导数部分的对角线元素(除了对角线上的第一个元素和最后一个元素)

  for (int i = 1; i < n - 1; ++i) {

    columns[2 * n + i].emplace_back(

        2 * n + i, (weight_ddx_ + 2.0 * weight_dddx_ / delta_s_square) /

                       (scale_factor_[2] * scale_factor_[2]));

    ++value_index;

  }

  // P 矩阵的二阶导数部分的最后一个对角线元素

  columns[3 * n - 1].emplace_back(

      3 * n - 1,

      (weight_ddx_ + weight_dddx_ / delta_s_square + weight_end_state_[2]) /

          (scale_factor_[2] * scale_factor_[2]));

  ++value_index;

  // P 矩阵的二阶导数部分的次对角线上的元素

  // -2 * w_dddx / delta_s^2 * x(i)'' * x(i + 1)''

  for (int i = 0; i < n - 1; ++i) {

    columns[2 * n + i].emplace_back(2 * n + i + 1,

                                    (-2.0 * weight_dddx_ / delta_s_square) /

                                        (scale_factor_[2] * scale_factor_[2]));

    ++value_index;

目标函数中的线性项部分,即 q 矩阵的构建

这部分代码在 PiecewiseJerkPathProblem::CalculateOffset 这个函数

void PiecewiseJerkPathProblem::CalculateOffset(std::vector<c_float>* q)

q 矩阵形式如下:

计算 q 矩阵的代码块如下:

  if (has_x_ref_) {

    for (int i = 0; i < n; ++i) {

      q->at(i) += -2.0 * weight_x_ref_vec_.at(i) * x_ref_[i] / scale_factor_[0];

    }

  }

  //

  if (has_end_state_ref_) {

    q->at(n - 1) +=

        -2.0 * weight_end_state_[0] * end_state_ref_[0] / scale_factor_[0];

    q->at(2 * n - 1) +=

        -2.0 * weight_end_state_[1] * end_state_ref_[1] / scale_factor_[1];

    q->at(3 * n - 1) +=

        -2.0 * weight_end_state_[2] * end_state_ref_[2] / scale_factor_[2];

  }

2. Constraints

2.1 不等式约束

2.2 连续性约束

用每个轨迹点处在 l 方向的 jerk 相等作为连续性约束。

上面的推导和下面的推导是一致的:

将 piecewise jerk 的条件带入:

得:

Now we generate constraints in matrix form.

For constrains a - lateral offset - 0 阶导数

For constrains b - lateral velocity - 一阶导数

For constrains c - lateral acceleration - 二阶导

For constraints d - lateral jerk - 三阶导数

这里有一些问题,对于 jerk 的不等式约束,应该是下面的形式:

For constraints e - 连续性约束

下图是有四个点的时候仿射矩阵的具体形式:

For Constraints f:

约束可以写成:

具体形式:

Equality constraints

不等式约束的上下边界条件为:

上下边界条件是如何计算的?

关于边界约束的详细介绍参见这篇文章:https://zhuanlan.zhihu.com/p/481835121

二阶导边界极值的计算:

对应代码如下:

const double lat_acc_bound =

std::tan(veh_param.max_steer_angle() / veh_param.steer_ratio()) /

veh_param.wheel_base();

std::vector<std::pair<double, double>> ddl_bounds;

for (size_t i = 0; i < path_boundary_size; ++i) {

double s = static_cast<double>(i) * path_boundary.delta_s() +

path_boundary.start_s();

double kappa = reference_line.GetNearestReferencePoint(s).kappa();

ddl_bounds.emplace_back(-lat_acc_bound - kappa, lat_acc_bound - kappa);

}

三阶导边界极值的计算

最后,A 矩阵为:

仿射矩阵 A

至此,P 矩阵,q 矩阵,A 矩阵,b 矩阵均可以表示出来,放入 OSQP 求解器中,可以进行迭代求解了。

The Principle of Apollo Path Planning using Quadratic Programming

这里是 Piecewise Jerk Path Optimizer 的代码讲解。

这篇关于自动驾驶规划中使用 OSQP 进行二次规划 代码原理详细解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089366

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行