本文主要是介绍二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度计算
输入格式:如 abd###ce##f##*
package tree;
//二叉树的二叉链表实现
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
public class BTree<AnyType> {
BTNode rootNode=new BTNode();
class BTNode<AnyType>{
char data;
BTNode<AnyType> leftChildNode;
BTNode<AnyType> rightChildNode;
public BTNode(){
data=0;
leftChildNode=rightChildNode=null;
}
public BTNode(char data){
this.data=data;
leftChildNode=rightChildNode=null;
}
public BTNode(char data,BTNode leftChildNode,BTNode rightChildNode){
this.data=data;
leftChildNode=leftChildNode;
rightChildNode=rightChildNode;
}
}
//先序创建二叉树
char d[]=new char[100];
int i=0;
public BTNode creatBTree(){
BTNode node=null;
if(d[i]!='*'){
if(d[i]=='#'){
node=null;
i++;
}
else{
node=new BTNode(d[i]);
i++;
node.leftChildNode=creatBTree();
node.rightChildNode=creatBTree();
}
}
return node;
}
//先序递归遍历
public void preOrder(BTNode<AnyType> t){
if(t!=null){
System.out.print(t.data);
preOrder(t.leftChildNode);
preOrder(t.rightChildNode);
}
}
//先序非递归遍历
public void preStackOrder(BTNode t){
Stack s=new Stack();
BTNode p=t;
while(p!=null&&s.isEmpty()!=true){
if(p!=null){
System.out.print(p.data);
s.push(p);
p=p.leftChildNode;
}
if(s.isEmpty()){
s.pop();
p=p.rightChildNode;
}
}
}
//中序递归遍历
public void inOrder(BTNode t){
if(t!=null){
inOrder(t.leftChildNode);
System.out.print(t.data);
inOrder(t.rightChildNode);
}
}
//中序非递归遍历
public void inStackOrder(BTNode t){
Stack<BTNode> s=new Stack<BTNode>();
BTNode p=t;
while(p!=null&&s.isEmpty()){
if(p!=null){
s.push(p);
p=p.leftChildNode;
}
if(s.isEmpty()!=true){
p=s.pop();
System.out.print(p.data);
p=p.rightChildNode;
}
}
}
//后序递归遍历
public void postOrder(BTNode t){
if(t!=null){
postOrder(t.leftChildNode);
postOrder(t.rightChildNode);
System.out.print(t.data);
}
}
//后序非递归遍历
public void postStackOrder(BTNode t){
Stack<BTNode> s=new Stack<BTNode>();
Stack<Integer> ss=new Stack<Integer>();
Integer i=new Integer(1);
BTNode p=t;
BTNode q=t;
while(p!=null||s.isEmpty()!=true){
while(p!=null){
s.push(p);
ss.push(new Integer(0));
p=p.leftChildNode;
}
while(s.isEmpty()!=true&&ss.peek().equals(i)){
ss.pop();
q=s.pop();
System.out.print(q.data);
}
if(s.isEmpty()!=true){
ss.pop();
ss.push(i);
p=s.peek();
p=p.rightChildNode;
}
}
}
//层次非递归遍历
public void levelQueueOrder(BTNode t){
Queue<BTNode> q=new LinkedList<BTNode>();
q.add(t);
while(q.isEmpty()!=true){
BTNode step=q.remove();
System.out.print(step.data);
if(step.leftChildNode!=null){
q.add(step.leftChildNode);
}
if(step.rightChildNode!=null){
q.add(step.rightChildNode);
}
}
}
//计算二叉树深度
public int depth(BTNode t){
int leftDepth,rightDepth;
if(t==null)
return 0;
leftDepth=depth(t.leftChildNode);
rightDepth=depth(t.rightChildNode);
return Math.max(leftDepth,rightDepth)+1;
}
//叶子结点个数
int num=0;
public int leaf(BTNode t){
if(t!=null){
if(t.leftChildNode==null&&t.rightChildNode==null)
num++;
leaf(t.leftChildNode);
leaf(t.rightChildNode);
}
return num;
}
public static void main(String[] args) {
BTree bt=new BTree();
Scanner sc=new Scanner(System.in);
String a=sc.next();
char c[]=a.toCharArray();
for(int i=0;i<c.length;i++){
bt.d[i]=c[i];
}
bt.rootNode=bt.creatBTree();
System.out.println("先序遍历");
bt.preOrder(bt.rootNode);
System.out.println();
System.out.println("中序遍历");
bt.inOrder(bt.rootNode);
System.out.println();
System.out.println("后序遍历");
bt.postOrder(bt.rootNode);
System.out.println();
System.out.println("后序非递归遍历");
bt.postStackOrder(bt.rootNode);
System.out.println("层次遍历");
bt.levelQueueOrder(bt.rootNode);
System.out.println();
System.out.println("二叉树深度");
System.out.println(bt.depth(bt.rootNode));
System.out.println("叶子结点个数");
System.out.println(bt.leaf(bt.rootNode));
}
}
这篇关于二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!