Python 算法交易实验72 QTV200第一步: 获取原始数据并存入队列

本文主要是介绍Python 算法交易实验72 QTV200第一步: 获取原始数据并存入队列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

最近的数据流往前进了一步,我觉得基本可以开始同步的推进QTV200了。上次规划了整体的数据流,现在开始第一步。

内容

1 结构位置

这是上次的总体图:
在这里插入图片描述
以下是这次要实现的一小部分:

在这里插入图片描述
从结构上,这个是整体数据流的起点,系统因为这些不断 运行的数据才开始“动”了起来,可以称为源点。

2 规范与约束

源点是基于每分钟的节拍从外界读取数据,这部分目前我没用用付费接口(数据的需求量很小),所以基于自律(类似与吃自助餐)的原则,增加一些规范与约束。

  • 我获取的数据不会多,可以约束在60个ETF之内。
  • 每次请求只会查询当前时刻的前10分钟数据(数据少),每只ETF一天最多有60610 ~ 3600条数据
  • 每次请求10条的目的是为了防止某个时隙程序中断或者失效,通过冗余的数据可以在10分钟之内的终端内无缝恢复(从这角度,用某个云服务器做这件事比较合适,下一版考虑)
  • 任务按照秒进行划分,每秒最多提交6只ETF的请求,数据请求总量为60条
  • 周末一定不会发起查询请求

这样可以确保非必要不请求数据,即使请求数据,请求也被均匀分摊,每次的请求量非常之小(环保)

3 工具与方法

通过FLask-APS执行秒级的任务调度,通过Flask-Celery实现各ETF的异步抓取,确保时效的同时,减少CPU开销。(同步方式会独占一个核,很浪费的)。

有的时候倒也不纯粹是为了节约这点计算成本,而是总体成本。设想,一开始只跟踪3~4个ETF,同步状态下并发,可能抢占4个核一小会,还不至于出现卡顿(主机有32核)。但是如果跟踪60个ETF,那么整个机器就会因为这个原因处于卡顿状态,那就真的很没必要。

即使是现阶段,QTV102与Mongo通信的时候更新少量数据,但是是同步状态的,都让我的CPU负载处于一个很奇怪的状态。
在这里插入图片描述
虽然看着很满,其实我知道很多是处于浪费的状态的。

所以,如果用合适的方法进行调度,那么即使是60个ETF,甚至是600个ETF可能单核都足够了。这种效率的提升是很夸张的。目前在IO密集处理这块可以做到的提升最大。未来QTV200实现后,应该会把QTV102整个卸载掉。

3.1 worker

对于每一个ETF来说,处理的流程是相同的。所以,可以先做一个worker,然后调用的时候按不通的ETF代码进行参数化就可以了。

etf_crawl_worker.py

# 0 记录日志
import logging
from logging.handlers import RotatingFileHandlerlogger = logging.getLogger('MyLogger')
handler = RotatingFileHandler('/var/log/workers.log', maxBytes=1024*1024*100, backupCount=5)
logger.addHandler(handler)
logger.setLevel(logging.INFO)# 1 允许传入一个参数
import argparse
def get_arg():parser = argparse.ArgumentParser(description='Customized Arguments')
#     parser.add_argument('-p','--pkl', default='Meta')# 制程名parser.add_argument('--etf_code')parser.add_argument('--assigned_work_dt')# 准备解析参数args = parser.parse_args()res_dict = {}res_dict['etf_code'] = args.etf_coderes_dict['assigned_work_dt'] = args.assigned_work_dtreturn res_dictarg_dict = get_arg()etf_code = arg_dict['etf_code']
assigned_work_dt = arg_dict.get('assigned_work_dt')from Basefuncs import * 
import time# 2 判断是否是可执行时间
if assigned_work_dt is None:ts = time.time()
else:if assigned_work_dt.strip() == '':ts = time.time()else:ts = inverse_time_str(assigned_work_dt)cur_dt_str = get_time_str1(ts)
cur_time = cur_dt_str.split()[-1]morning_start = '09:25:00'
morning_end = '11:41:00'
afternoon_start = '12:55:00'
afternoon_end = '15:11:00'is_moring_work = False 
is_afternoon_work = False
if cur_time >= morning_start and cur_time < morning_end:is_moring_work = True 
if cur_time >= afternoon_start and cur_time < afternoon_end:is_afternoon_work = True is_work_time = is_moring_work or is_afternoon_workif is_work_time:start_dt = get_time_str1( (ts//60)*60 - 600 )end_dt = get_time_str1( ts + 60 )# 目标队列设置qm = QManager(redis_agent_host = 'http://192.168.0.4:24118/',redis_connection_hash = None)# qm.info()# 3 执行# etf_code = '510300'import akshare as ak para_dict  ={}para_dict['symbol'] = etf_codepara_dict['period'] = "1"para_dict['adjust'] = ''para_dict['start_date'] = start_dtpara_dict['end_date'] = end_dt# 如果时间段不对,那么就是空df = ak.fund_etf_hist_min_em(**para_dict)# 是否获取到了数据is_query_data = True if len(df) else False if is_query_data:# ak的变量字典映射ak_dict = {}ak_dict['时间'] = 'data_dt'ak_dict['开盘'] = 'open'ak_dict['收盘'] = 'close'ak_dict['最高'] = 'high'ak_dict['最低'] = 'low'ak_dict['成交量'] = 'vol'ak_dict['成交额'] = 'amt'keep_cols = ['data_dt','open','close','high','low','vol','amt']cols = list(df.columns)new_cols = [ak_dict.get(x) or x for x in cols ]df.columns = new_colsdf1 = df[keep_cols]df1['data_source'] = 'AK'df1['code'] = etf_codedf1['market'] = 'SH'df1['rec_id'] = df1['data_source'] + '_' + df1['market'] + '_' + df1['code'].apply(str) \+ '_' + df1['data_dt']# 调整股和手vol_approximal = df1['amt'] / df1['close']maybe_wrong = (vol_approximal / df1['vol']) > 10if maybe_wrong.sum() > 0:df1['vol'] = df1['vol'] * 100stream_name = 'YOURS.stream_in'# 写入结果队列data_listofdict = df1.to_dict(orient='records')resp = qm.parrallel_write_msg(stream_name, data_listofdict)logger.info('%s %s 【%s】' % (cur_dt_str,'etf_crawl_worker',resp['msg'] ))   else:logger.info('%s %s 【未获取到数据】' % (cur_dt_str,'etf_crawl_worker'))   else:logger.info('%s %s 【不在工作时间】' % (cur_dt_str,'etf_crawl_worker'))        

worker分为几部分:

  • 1 设定使用rotate日志,记录每次执行的效果
  • 2 get_arg 获取调用时传入的关键字参数
  • 3 判断是否在工作时间。默认情况,使用当前时间;也可接受使用指定的时间
  • 4 如果是在工作时间,那么推算对应时间的前10分钟和后1分钟,作为参数发起请求
  • 5 获取数据后,还有一个判断交易量是手还是股的小逻辑
  • 6 处理完成后,推入队列,然后记录日志,worker执行完毕

两种调用方法:

  • 1 实时获取
python3 etf_crawl_worker.py --etf_code=510300
  • 2 指定历史时间的获取
python3 etf_crawl_worker.py --etf_code=510300 --assigned_work_dt='2024-06-21 10:00:00'

获取日志查看,第三条数据是因为指定了工作时间。

/var/log/workers.log

└─ $ cat workers.log
2024-06-23 20:27:07 etf_crawl_worker 【不在工作时间】
2024-06-23 20:40:41 etf_crawl_worker 【不在工作时间】
2024-06-23 20:57:48 etf_crawl_worker 【ok,add 12 of 12  messages】

3.2 shell

exe_etf_crawl_worker.sh
chmod +x exe_etf_crawl_worker.sh

本来想让脚本可以接受第二个参数的,但是似乎隔空传带空格的参数很麻烦,另外实时调用(脚本)的时候没有必要再筛选时间了。

#!/bin/bash# 记录
# sh /home/test_exe.sh com_info_change_pattern running# 有些情况需要把source替换为 .
# . /root/anaconda3/etc/profile.d/conda.sh
# 激活 base 环境(或你创建的特定环境)
source /root/miniconda3/etc/profile.d/conda.sh#conda init
conda activate basecd  /home/workers && python3 etf_crawl_worker.py --etf_code=$1

3.3 flask_celery

将flask_celery升级为可执行脚本的版本

In [1]: import requests as req...: param_dict = {'the_cmd': 'bash /home/test_exe.sh'}...: resp = req.post('http://127.0.0.1:24104/exe_sh/',json = param_dict )In [2]: resp
Out[2]: <Response [200]>└─ $ cat tem.log
2024-06-23 22:16:25 - 脚本执行

3.4 将任务发布为flask_aps任务

任务参数如下

# 任务6:执行脚本-qtv200 510300 get 
task006 = {}
task006['machine'] = 'm4'
task006['task_id'] = 'task006'
task006['description'] = '执行脚本,在周一到周五,上午9点到下午4点执行,获取510300的数据。在秒0执行'
task006['pid'] = '.'.join([task006['machine'],task006['task_id']  ])
task006['job_name'] = 'make_a_request' # 这个是对flask-aps来说的
task006['set_to_status'] = 'running'
task006['running_status'] = ''
task006['start_dt'] = '2024-05-01 00:00:00'
task006['end_dt'] = '2099-06-01 00:00:00'
task006['task_kwargs'] = {'para_dict': {'url':'http://172.17.0.1:24104/exe_sh/','json_data':{'the_cmd': 'bash /home/exe_etf_crawl_worker.sh 510300'}}}
task006['interval_para'] ={'second':'0','day_of_week':'0-4','hour':'9-16'}
task006 = TaskTable(**task006)
task006.save()

ok,明天等着看吧

In [11]: the_task_obj = TaskTable.objects(machine='m4',task_id ='task006').first()...: exe_a_task(the_task_obj)
set to status running  current state  init
Publish a task
Out[11]: 1

这篇关于Python 算法交易实验72 QTV200第一步: 获取原始数据并存入队列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088761

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧