Python 算法交易实验72 QTV200第一步: 获取原始数据并存入队列

本文主要是介绍Python 算法交易实验72 QTV200第一步: 获取原始数据并存入队列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

最近的数据流往前进了一步,我觉得基本可以开始同步的推进QTV200了。上次规划了整体的数据流,现在开始第一步。

内容

1 结构位置

这是上次的总体图:
在这里插入图片描述
以下是这次要实现的一小部分:

在这里插入图片描述
从结构上,这个是整体数据流的起点,系统因为这些不断 运行的数据才开始“动”了起来,可以称为源点。

2 规范与约束

源点是基于每分钟的节拍从外界读取数据,这部分目前我没用用付费接口(数据的需求量很小),所以基于自律(类似与吃自助餐)的原则,增加一些规范与约束。

  • 我获取的数据不会多,可以约束在60个ETF之内。
  • 每次请求只会查询当前时刻的前10分钟数据(数据少),每只ETF一天最多有60610 ~ 3600条数据
  • 每次请求10条的目的是为了防止某个时隙程序中断或者失效,通过冗余的数据可以在10分钟之内的终端内无缝恢复(从这角度,用某个云服务器做这件事比较合适,下一版考虑)
  • 任务按照秒进行划分,每秒最多提交6只ETF的请求,数据请求总量为60条
  • 周末一定不会发起查询请求

这样可以确保非必要不请求数据,即使请求数据,请求也被均匀分摊,每次的请求量非常之小(环保)

3 工具与方法

通过FLask-APS执行秒级的任务调度,通过Flask-Celery实现各ETF的异步抓取,确保时效的同时,减少CPU开销。(同步方式会独占一个核,很浪费的)。

有的时候倒也不纯粹是为了节约这点计算成本,而是总体成本。设想,一开始只跟踪3~4个ETF,同步状态下并发,可能抢占4个核一小会,还不至于出现卡顿(主机有32核)。但是如果跟踪60个ETF,那么整个机器就会因为这个原因处于卡顿状态,那就真的很没必要。

即使是现阶段,QTV102与Mongo通信的时候更新少量数据,但是是同步状态的,都让我的CPU负载处于一个很奇怪的状态。
在这里插入图片描述
虽然看着很满,其实我知道很多是处于浪费的状态的。

所以,如果用合适的方法进行调度,那么即使是60个ETF,甚至是600个ETF可能单核都足够了。这种效率的提升是很夸张的。目前在IO密集处理这块可以做到的提升最大。未来QTV200实现后,应该会把QTV102整个卸载掉。

3.1 worker

对于每一个ETF来说,处理的流程是相同的。所以,可以先做一个worker,然后调用的时候按不通的ETF代码进行参数化就可以了。

etf_crawl_worker.py

# 0 记录日志
import logging
from logging.handlers import RotatingFileHandlerlogger = logging.getLogger('MyLogger')
handler = RotatingFileHandler('/var/log/workers.log', maxBytes=1024*1024*100, backupCount=5)
logger.addHandler(handler)
logger.setLevel(logging.INFO)# 1 允许传入一个参数
import argparse
def get_arg():parser = argparse.ArgumentParser(description='Customized Arguments')
#     parser.add_argument('-p','--pkl', default='Meta')# 制程名parser.add_argument('--etf_code')parser.add_argument('--assigned_work_dt')# 准备解析参数args = parser.parse_args()res_dict = {}res_dict['etf_code'] = args.etf_coderes_dict['assigned_work_dt'] = args.assigned_work_dtreturn res_dictarg_dict = get_arg()etf_code = arg_dict['etf_code']
assigned_work_dt = arg_dict.get('assigned_work_dt')from Basefuncs import * 
import time# 2 判断是否是可执行时间
if assigned_work_dt is None:ts = time.time()
else:if assigned_work_dt.strip() == '':ts = time.time()else:ts = inverse_time_str(assigned_work_dt)cur_dt_str = get_time_str1(ts)
cur_time = cur_dt_str.split()[-1]morning_start = '09:25:00'
morning_end = '11:41:00'
afternoon_start = '12:55:00'
afternoon_end = '15:11:00'is_moring_work = False 
is_afternoon_work = False
if cur_time >= morning_start and cur_time < morning_end:is_moring_work = True 
if cur_time >= afternoon_start and cur_time < afternoon_end:is_afternoon_work = True is_work_time = is_moring_work or is_afternoon_workif is_work_time:start_dt = get_time_str1( (ts//60)*60 - 600 )end_dt = get_time_str1( ts + 60 )# 目标队列设置qm = QManager(redis_agent_host = 'http://192.168.0.4:24118/',redis_connection_hash = None)# qm.info()# 3 执行# etf_code = '510300'import akshare as ak para_dict  ={}para_dict['symbol'] = etf_codepara_dict['period'] = "1"para_dict['adjust'] = ''para_dict['start_date'] = start_dtpara_dict['end_date'] = end_dt# 如果时间段不对,那么就是空df = ak.fund_etf_hist_min_em(**para_dict)# 是否获取到了数据is_query_data = True if len(df) else False if is_query_data:# ak的变量字典映射ak_dict = {}ak_dict['时间'] = 'data_dt'ak_dict['开盘'] = 'open'ak_dict['收盘'] = 'close'ak_dict['最高'] = 'high'ak_dict['最低'] = 'low'ak_dict['成交量'] = 'vol'ak_dict['成交额'] = 'amt'keep_cols = ['data_dt','open','close','high','low','vol','amt']cols = list(df.columns)new_cols = [ak_dict.get(x) or x for x in cols ]df.columns = new_colsdf1 = df[keep_cols]df1['data_source'] = 'AK'df1['code'] = etf_codedf1['market'] = 'SH'df1['rec_id'] = df1['data_source'] + '_' + df1['market'] + '_' + df1['code'].apply(str) \+ '_' + df1['data_dt']# 调整股和手vol_approximal = df1['amt'] / df1['close']maybe_wrong = (vol_approximal / df1['vol']) > 10if maybe_wrong.sum() > 0:df1['vol'] = df1['vol'] * 100stream_name = 'YOURS.stream_in'# 写入结果队列data_listofdict = df1.to_dict(orient='records')resp = qm.parrallel_write_msg(stream_name, data_listofdict)logger.info('%s %s 【%s】' % (cur_dt_str,'etf_crawl_worker',resp['msg'] ))   else:logger.info('%s %s 【未获取到数据】' % (cur_dt_str,'etf_crawl_worker'))   else:logger.info('%s %s 【不在工作时间】' % (cur_dt_str,'etf_crawl_worker'))        

worker分为几部分:

  • 1 设定使用rotate日志,记录每次执行的效果
  • 2 get_arg 获取调用时传入的关键字参数
  • 3 判断是否在工作时间。默认情况,使用当前时间;也可接受使用指定的时间
  • 4 如果是在工作时间,那么推算对应时间的前10分钟和后1分钟,作为参数发起请求
  • 5 获取数据后,还有一个判断交易量是手还是股的小逻辑
  • 6 处理完成后,推入队列,然后记录日志,worker执行完毕

两种调用方法:

  • 1 实时获取
python3 etf_crawl_worker.py --etf_code=510300
  • 2 指定历史时间的获取
python3 etf_crawl_worker.py --etf_code=510300 --assigned_work_dt='2024-06-21 10:00:00'

获取日志查看,第三条数据是因为指定了工作时间。

/var/log/workers.log

└─ $ cat workers.log
2024-06-23 20:27:07 etf_crawl_worker 【不在工作时间】
2024-06-23 20:40:41 etf_crawl_worker 【不在工作时间】
2024-06-23 20:57:48 etf_crawl_worker 【ok,add 12 of 12  messages】

3.2 shell

exe_etf_crawl_worker.sh
chmod +x exe_etf_crawl_worker.sh

本来想让脚本可以接受第二个参数的,但是似乎隔空传带空格的参数很麻烦,另外实时调用(脚本)的时候没有必要再筛选时间了。

#!/bin/bash# 记录
# sh /home/test_exe.sh com_info_change_pattern running# 有些情况需要把source替换为 .
# . /root/anaconda3/etc/profile.d/conda.sh
# 激活 base 环境(或你创建的特定环境)
source /root/miniconda3/etc/profile.d/conda.sh#conda init
conda activate basecd  /home/workers && python3 etf_crawl_worker.py --etf_code=$1

3.3 flask_celery

将flask_celery升级为可执行脚本的版本

In [1]: import requests as req...: param_dict = {'the_cmd': 'bash /home/test_exe.sh'}...: resp = req.post('http://127.0.0.1:24104/exe_sh/',json = param_dict )In [2]: resp
Out[2]: <Response [200]>└─ $ cat tem.log
2024-06-23 22:16:25 - 脚本执行

3.4 将任务发布为flask_aps任务

任务参数如下

# 任务6:执行脚本-qtv200 510300 get 
task006 = {}
task006['machine'] = 'm4'
task006['task_id'] = 'task006'
task006['description'] = '执行脚本,在周一到周五,上午9点到下午4点执行,获取510300的数据。在秒0执行'
task006['pid'] = '.'.join([task006['machine'],task006['task_id']  ])
task006['job_name'] = 'make_a_request' # 这个是对flask-aps来说的
task006['set_to_status'] = 'running'
task006['running_status'] = ''
task006['start_dt'] = '2024-05-01 00:00:00'
task006['end_dt'] = '2099-06-01 00:00:00'
task006['task_kwargs'] = {'para_dict': {'url':'http://172.17.0.1:24104/exe_sh/','json_data':{'the_cmd': 'bash /home/exe_etf_crawl_worker.sh 510300'}}}
task006['interval_para'] ={'second':'0','day_of_week':'0-4','hour':'9-16'}
task006 = TaskTable(**task006)
task006.save()

ok,明天等着看吧

In [11]: the_task_obj = TaskTable.objects(machine='m4',task_id ='task006').first()...: exe_a_task(the_task_obj)
set to status running  current state  init
Publish a task
Out[11]: 1

这篇关于Python 算法交易实验72 QTV200第一步: 获取原始数据并存入队列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088761

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa