使用Dash开发交互式数据可视化网页--响应式编程

2024-06-23 21:08

本文主要是介绍使用Dash开发交互式数据可视化网页--响应式编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

交互性

后续的操作前,需要安装如下Python包

pip install dash==0.20.0  # The core dash backend
pip install dash-renderer==0.11.2  # The dash front-end
pip install dash-html-components==0.8.0  # HTML components
pip install dash-core-components==0.18.1  # Supercharged components
pip install plotly --upgrade  # Plotly graphing library used in examples

第一部分
完成了整体布局,但是基本都是静态图形,无法体现dash交互性数据探索特性。这一部分则是让图形能够动起来,对我们的操作有所回应。

import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as htmlapp = dash.Dash()app.layout = html.Div([dcc.Input(id='my-id', value='initial vale', type='text'),html.Div(id='my-div')
])@app.callback(Output(component_id='my-div', component_property='children'),[Input(component_id='my-id', component_property='value')]
)
def update_output_div(input_value):return 'you\'ve entered "{}"'.format(input_value)if __name__=='__main__':app.run_server()

运行之后会的界面只有一个dcc.Input提供的输入框,但是这个输入框是输入后,是可以改变页面中的文字。那么这个是如何实现的呢?

我们的应用界面的输入和输出是通过app.callback装饰器进行声明。

在Dash中,应用的输入输出其实就是某个组件的属性(properties)。因此,Output(component_id='my-div', component_property='children')就可以解释为,将值输出到ID为my-div的HTML组件的children的参数中,而[Input(component_id='my-id', component_property='value')]则表明输入时来自于ID为my-idvalue参数。

随着输入的值的改变,装饰器会调用函数update_output_div生成新值。这其实有点像Excel,当你写好一个函数后,修改原来值会产生新的值,这种编程方法叫做"Reactive Programming",应该可以翻译为响应式编程吧.

让我们更进一步,看看使用Slider组件加上响应式编程后,图片是如何动起来. 数据和之前使用的一致,之前是展示了所有年份,不同洲的国家的GDP分布情况。而这里则可以使用滑动栏的方式,逐年查看。

import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pddf = pd.read_csv('https://raw.githubusercontent.com/plotly/''datasets/master/gapminderDataFiveYear.csv')app = dash.Dash()app.layout = html.Div([dcc.Graph(id = 'graph-with-slider'),dcc.Slider(id = 'years-slider',min = df['year'].min(),max = df['year'].max(),value = df['year'].min(),step = None,marks = {str(year): str(year) for year in df['year'].unique()})
])@app.callback(dash.dependencies.Output(component_id = 'graph-with-slider', component_property = "figure"),[dash.dependencies.Input('years-slider', 'value')]
)
def update_figure(selected_year):filtered_df = df[df.year == selected_year]traces = []for i in filtered_df.continent.unique():df_by_continent = filtered_df[filtered_df['continent'] == i]traces.append(go.Scatter(x = df_by_continent['gdpPercap'],y = df_by_continent['lifeExp'],text = df_by_continent['country'],mode = 'markers',opacity = 0.7,marker = {'size': 15,'line': {'width':0.5, 'color':'white'}},name = i))return {'data': traces,'layout': go.Layout(xaxis = {'type':'log', 'title':'GDP Per Capita'},yaxis = {'title':'Life Expectancy', 'range':[20,90]},margin = {'l':40, 'b':40, 't':10, 'r':10},legend = {'x':0, 'y':1},hovermode = 'closest')}if __name__ == '__main__':app.run_server()

首先是在布局中设置了两个占位组件,这两个占位组件一个用于提供年份用于筛选,一个用于则是展示输出。然后update_figure接受值返回对应的图形对象,最后展示到浏览器中。

Dash应用在启动的时候会加载数据,因此当用户访问应用的时候,数据已经在内存中,随后用户的交互操作就能得到及时的响应。当然callback函数不会修改原始数据,它仅仅是在内存中创建新的拷贝而已。

多个输入值

上一节只是单个输入单个输出,在Dash中,每个Output,都可以由多个Input。这一部分则是介绍通过加入更多调节组件多角度地展示数据。这里用到了五个调节组件,为2个Dropdown, 2个RadioItems和1个Slider

import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pdapp = dash.Dash()df = pd.read_csv('https://gist.githubusercontent.com/chriddyp/''cb5392c35661370d95f300086accea51/raw/''8e0768211f6b747c0db42a9ce9a0937dafcbd8b2/''indicators.csv')available_indicators = df['Indicator Name'].unique()app.layout = html.Div([html.Div([html.Div([dcc.Dropdown(id='xaxis-column',options=[{'label':i, 'value':i} for i in available_indicators],value = 'Fertility rate, total(births per woman)'),dcc.RadioItems(id = 'xaxis-type',options = [{'label':i, 'value':i} for i in ['Liner','Log']],value = 'Liner',labelStype={'display':'inline-block'})],style = {'width':'48%', 'display':'inline-block'}),html.Div([dcc.Dropdown(id = 'yaxis-column',options = [{'label':i, 'value':i} for i in available_indicators],value = 'Life expectancy at birth, total(year)'),dcc.RadioItems(id = 'yaxis-type',options = [{'label':i, 'value':i} for i in ['Liner','Log']],value = 'Liner',labelStyle={'display':'inline-block'})], style={'width':'48%','float':'right','display':'inline-block'})]),dcc.Graph(id='indicator-graphic'),dcc.Slider(id='year-slider',min=df['Year'].min(),max=df['Year'].max(),value=df['Year'].max(),step=None,marks={str(year): str(year) for year in df['Year'].unique()})
])@app.callback(Output('indicator-graphic','figure'),[Input('xaxis-column','value'),Input('yaxis-column','value'),Input('xaxis-type','value'),Input('yaxis-type','value'),Input('year-slider','value')]
)
def update_graph(xaxis_column_name, yaxis_column_name,xaxis_type, yaxis_type,year_value):dff = df[df['Year'] == year_value]return {'data':[go.Scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],mode = 'markers',marker = {'size': 15,'opacity': 0.5,'line':{'width':0.5, 'color':'white'}})],'layout':go.Layout(xaxis={'title':xaxis_column_name,'type':'linear' if xaxis_type == 'Liner' else 'log'},yaxis={'title': yaxis_column_name,'type': 'linear' if yaxis_type == 'Liner' else 'log'},margin={'l':40, 'b':40,'t':10,'r':0},hovermode='closest')}if __name__ == '__main__':app.run_server()

和单个输入区别不大,就是输入多了,要写的代码多了,写代码的时候可能会写错而已。如果有多个输出的需求,只要定义多个callback函数即可。

第二部分小节

Dash应用使用装饰器callback进行响应式编程。回调函数根据component_idcomponent_property从不同组件中获取输入值,然后其所装饰的函数进行计算后,将值返回装饰器,最后将计算结果输出到指定组件中。

这篇关于使用Dash开发交互式数据可视化网页--响应式编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088278

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结