使用Dash开发交互式数据可视化网页--响应式编程

2024-06-23 21:08

本文主要是介绍使用Dash开发交互式数据可视化网页--响应式编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

交互性

后续的操作前,需要安装如下Python包

pip install dash==0.20.0  # The core dash backend
pip install dash-renderer==0.11.2  # The dash front-end
pip install dash-html-components==0.8.0  # HTML components
pip install dash-core-components==0.18.1  # Supercharged components
pip install plotly --upgrade  # Plotly graphing library used in examples

第一部分
完成了整体布局,但是基本都是静态图形,无法体现dash交互性数据探索特性。这一部分则是让图形能够动起来,对我们的操作有所回应。

import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as htmlapp = dash.Dash()app.layout = html.Div([dcc.Input(id='my-id', value='initial vale', type='text'),html.Div(id='my-div')
])@app.callback(Output(component_id='my-div', component_property='children'),[Input(component_id='my-id', component_property='value')]
)
def update_output_div(input_value):return 'you\'ve entered "{}"'.format(input_value)if __name__=='__main__':app.run_server()

运行之后会的界面只有一个dcc.Input提供的输入框,但是这个输入框是输入后,是可以改变页面中的文字。那么这个是如何实现的呢?

我们的应用界面的输入和输出是通过app.callback装饰器进行声明。

在Dash中,应用的输入输出其实就是某个组件的属性(properties)。因此,Output(component_id='my-div', component_property='children')就可以解释为,将值输出到ID为my-div的HTML组件的children的参数中,而[Input(component_id='my-id', component_property='value')]则表明输入时来自于ID为my-idvalue参数。

随着输入的值的改变,装饰器会调用函数update_output_div生成新值。这其实有点像Excel,当你写好一个函数后,修改原来值会产生新的值,这种编程方法叫做"Reactive Programming",应该可以翻译为响应式编程吧.

让我们更进一步,看看使用Slider组件加上响应式编程后,图片是如何动起来. 数据和之前使用的一致,之前是展示了所有年份,不同洲的国家的GDP分布情况。而这里则可以使用滑动栏的方式,逐年查看。

import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pddf = pd.read_csv('https://raw.githubusercontent.com/plotly/''datasets/master/gapminderDataFiveYear.csv')app = dash.Dash()app.layout = html.Div([dcc.Graph(id = 'graph-with-slider'),dcc.Slider(id = 'years-slider',min = df['year'].min(),max = df['year'].max(),value = df['year'].min(),step = None,marks = {str(year): str(year) for year in df['year'].unique()})
])@app.callback(dash.dependencies.Output(component_id = 'graph-with-slider', component_property = "figure"),[dash.dependencies.Input('years-slider', 'value')]
)
def update_figure(selected_year):filtered_df = df[df.year == selected_year]traces = []for i in filtered_df.continent.unique():df_by_continent = filtered_df[filtered_df['continent'] == i]traces.append(go.Scatter(x = df_by_continent['gdpPercap'],y = df_by_continent['lifeExp'],text = df_by_continent['country'],mode = 'markers',opacity = 0.7,marker = {'size': 15,'line': {'width':0.5, 'color':'white'}},name = i))return {'data': traces,'layout': go.Layout(xaxis = {'type':'log', 'title':'GDP Per Capita'},yaxis = {'title':'Life Expectancy', 'range':[20,90]},margin = {'l':40, 'b':40, 't':10, 'r':10},legend = {'x':0, 'y':1},hovermode = 'closest')}if __name__ == '__main__':app.run_server()

首先是在布局中设置了两个占位组件,这两个占位组件一个用于提供年份用于筛选,一个用于则是展示输出。然后update_figure接受值返回对应的图形对象,最后展示到浏览器中。

Dash应用在启动的时候会加载数据,因此当用户访问应用的时候,数据已经在内存中,随后用户的交互操作就能得到及时的响应。当然callback函数不会修改原始数据,它仅仅是在内存中创建新的拷贝而已。

多个输入值

上一节只是单个输入单个输出,在Dash中,每个Output,都可以由多个Input。这一部分则是介绍通过加入更多调节组件多角度地展示数据。这里用到了五个调节组件,为2个Dropdown, 2个RadioItems和1个Slider

import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pdapp = dash.Dash()df = pd.read_csv('https://gist.githubusercontent.com/chriddyp/''cb5392c35661370d95f300086accea51/raw/''8e0768211f6b747c0db42a9ce9a0937dafcbd8b2/''indicators.csv')available_indicators = df['Indicator Name'].unique()app.layout = html.Div([html.Div([html.Div([dcc.Dropdown(id='xaxis-column',options=[{'label':i, 'value':i} for i in available_indicators],value = 'Fertility rate, total(births per woman)'),dcc.RadioItems(id = 'xaxis-type',options = [{'label':i, 'value':i} for i in ['Liner','Log']],value = 'Liner',labelStype={'display':'inline-block'})],style = {'width':'48%', 'display':'inline-block'}),html.Div([dcc.Dropdown(id = 'yaxis-column',options = [{'label':i, 'value':i} for i in available_indicators],value = 'Life expectancy at birth, total(year)'),dcc.RadioItems(id = 'yaxis-type',options = [{'label':i, 'value':i} for i in ['Liner','Log']],value = 'Liner',labelStyle={'display':'inline-block'})], style={'width':'48%','float':'right','display':'inline-block'})]),dcc.Graph(id='indicator-graphic'),dcc.Slider(id='year-slider',min=df['Year'].min(),max=df['Year'].max(),value=df['Year'].max(),step=None,marks={str(year): str(year) for year in df['Year'].unique()})
])@app.callback(Output('indicator-graphic','figure'),[Input('xaxis-column','value'),Input('yaxis-column','value'),Input('xaxis-type','value'),Input('yaxis-type','value'),Input('year-slider','value')]
)
def update_graph(xaxis_column_name, yaxis_column_name,xaxis_type, yaxis_type,year_value):dff = df[df['Year'] == year_value]return {'data':[go.Scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],mode = 'markers',marker = {'size': 15,'opacity': 0.5,'line':{'width':0.5, 'color':'white'}})],'layout':go.Layout(xaxis={'title':xaxis_column_name,'type':'linear' if xaxis_type == 'Liner' else 'log'},yaxis={'title': yaxis_column_name,'type': 'linear' if yaxis_type == 'Liner' else 'log'},margin={'l':40, 'b':40,'t':10,'r':0},hovermode='closest')}if __name__ == '__main__':app.run_server()

和单个输入区别不大,就是输入多了,要写的代码多了,写代码的时候可能会写错而已。如果有多个输出的需求,只要定义多个callback函数即可。

第二部分小节

Dash应用使用装饰器callback进行响应式编程。回调函数根据component_idcomponent_property从不同组件中获取输入值,然后其所装饰的函数进行计算后,将值返回装饰器,最后将计算结果输出到指定组件中。

这篇关于使用Dash开发交互式数据可视化网页--响应式编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088278

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(