机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本)

本文主要是介绍机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、普通实现
    • 1 数据集准备
    • 2 逻辑回归模型
    • 3 损失函数
    • 4 计算损失函数的梯度
    • 5 梯度下降算法
    • 6 训练模型
  • 二、多项式特征实现非线性分类
    • 1 数据准备与多项式特征构造
    • 2 逻辑回归模型
  • 三、逻辑回归 --- 正则化实现
    • 1 数据准备
    • 2 逻辑回归模型
    • 3 正则化损失函数
    • 4 计算损失函数的梯度
    • 5 梯度下降
    • 6 训练模型
  • 总结


前言

今天我们开始介绍逻辑回归的从零开始实现代码了,其中内容会包括普通实现、多项式特征实现非线性分类、正则化实现三个版本。相信看完底层实现你对逻辑回归的理解也会上升一个层次。

一、普通实现

1 数据集准备

在训练的初始阶段,我们将要构建一个逻辑回归模型来预测,某个学生是否被大学录取。设想你是大学相关部分的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。现在你拥有之前申请学生的可以用于训练逻辑回归的训练样本集。对于每一个训练样本,你有他们两次测试的评分和最后是被录取的结果。为了完成这个预测任务,我们准备构建一个可以基于两次测试评分来评估录取可能性的分类模型。
让我们从检查数据开始。

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltpath = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
data.head()

输出:
在这里插入图片描述

# 可视化一下该二分类数据
fig, ax = plt.subplots(1,1,figsize=(4,3))
ax.scatter(data[data['Admitted']==1]['Exam 1'], data[data['Admitted']==1]['Exam 2'], color = 'lightgreen', marker='o', label='Admitted')
ax.scatter(data[data['Admitted']==0]['Exam 1'], data[data['Admitted']==0]['Exam 2'], color = 'red', marker='x', label='Not Admitted')plt.xlabel('Exam 1 Score')
plt.ylabel('Exam 2 Score')
plt.legend(loc='upper right')
plt.grid(True)
plt.show()

输出:
在这里插入图片描述
看起来在两类间,有一个清晰的决策边界。现在我们需要实现逻辑回归,那样就可以训练一个模型来预测结果。

# 数据准备
X_train = data.iloc[:,0:2].values   # X_train是一个(m,n)的矩阵,m是样本数,n是特征数
y_train = data.iloc[:,2].values     # y_train是一个(m,)的向量
print(f"X_train: {X_train}")
print(f"y_train: {y_train}")

输出:
在这里插入图片描述

2 逻辑回归模型

f w , b ( x ) = g ( w ⋅ x + b ) f_{\mathbf{w},b}(x) = g(\mathbf{w}\cdot \mathbf{x} + b) fw,b(x)=g(wx+b)

g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1

回忆逻辑回归模型,最外层是一个sigmoid函数,因此我们需要先实现sigmoid函数。

def sigmoid(z):return 1 / (1 + np.exp(-z))
# 可视化一下sigmoid函数
nums = np.arange(-10, 10, step=1)
fig, ax = plt.subplots(1,1,figsize=(4,3))
ax.plot(nums, sigmoid(nums), color='lightgreen')
plt.grid(True)
plt.show()

输出:
在这里插入图片描述
模型实现了,接下来我们需要实现损失函数,以及梯度下降算法。

3 损失函数

l o s s ( f w , b ( x ( i ) ) , y ( i ) ) = ( − y ( i ) log ⁡ ( f w , b ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − f w , b ( x ( i ) ) ) (2) loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) = (-y^{(i)} \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) - \left( 1 - y^{(i)}\right) \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) \tag{2} loss(fw,b(x(i)),y(i))=(y(i)log(fw,b(x(i)))(1y(i))log(1fw,b(x(i)))(2)

  • f w , b ( x ( i ) ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) fw,b(x(i)) is the model’s prediction, while y ( i ) y^{(i)} y(i), which is the actual label

  • f w , b ( x ( i ) ) = g ( w ⋅ x ( i ) + b ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(\mathbf{w} \cdot \mathbf{x^{(i)}} + b) fw,b(x(i))=g(wx(i)+b) where function g g g is the sigmoid function.

    • It might be helpful to first calculate an intermediate variable z w , b ( x ( i ) ) = w ⋅ x ( i ) + b = w 0 x 0 ( i ) + . . . + w n − 1 x n − 1 ( i ) + b z_{\mathbf{w},b}(\mathbf{x}^{(i)}) = \mathbf{w} \cdot \mathbf{x^{(i)}} + b = w_0x^{(i)}_0 + ... + w_{n-1}x^{(i)}_{n-1} + b zw,b(x(i))=wx(i)+b=w0x0(i)+...+wn1xn1(i)+b where n n n is the number of features, before calculating f w , b ( x ( i ) ) = g ( z w , b ( x ( i ) ) ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(z_{\mathbf{w},b}(\mathbf{x}^{(i)})) fw,b(x(i))=g(zw,b(x(i)))
      *
      J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]
def compute_cost_logistic(X, y, w, b):<

这篇关于机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088253

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义