机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本)

本文主要是介绍机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、普通实现
    • 1 数据集准备
    • 2 逻辑回归模型
    • 3 损失函数
    • 4 计算损失函数的梯度
    • 5 梯度下降算法
    • 6 训练模型
  • 二、多项式特征实现非线性分类
    • 1 数据准备与多项式特征构造
    • 2 逻辑回归模型
  • 三、逻辑回归 --- 正则化实现
    • 1 数据准备
    • 2 逻辑回归模型
    • 3 正则化损失函数
    • 4 计算损失函数的梯度
    • 5 梯度下降
    • 6 训练模型
  • 总结


前言

今天我们开始介绍逻辑回归的从零开始实现代码了,其中内容会包括普通实现、多项式特征实现非线性分类、正则化实现三个版本。相信看完底层实现你对逻辑回归的理解也会上升一个层次。

一、普通实现

1 数据集准备

在训练的初始阶段,我们将要构建一个逻辑回归模型来预测,某个学生是否被大学录取。设想你是大学相关部分的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。现在你拥有之前申请学生的可以用于训练逻辑回归的训练样本集。对于每一个训练样本,你有他们两次测试的评分和最后是被录取的结果。为了完成这个预测任务,我们准备构建一个可以基于两次测试评分来评估录取可能性的分类模型。
让我们从检查数据开始。

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltpath = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
data.head()

输出:
在这里插入图片描述

# 可视化一下该二分类数据
fig, ax = plt.subplots(1,1,figsize=(4,3))
ax.scatter(data[data['Admitted']==1]['Exam 1'], data[data['Admitted']==1]['Exam 2'], color = 'lightgreen', marker='o', label='Admitted')
ax.scatter(data[data['Admitted']==0]['Exam 1'], data[data['Admitted']==0]['Exam 2'], color = 'red', marker='x', label='Not Admitted')plt.xlabel('Exam 1 Score')
plt.ylabel('Exam 2 Score')
plt.legend(loc='upper right')
plt.grid(True)
plt.show()

输出:
在这里插入图片描述
看起来在两类间,有一个清晰的决策边界。现在我们需要实现逻辑回归,那样就可以训练一个模型来预测结果。

# 数据准备
X_train = data.iloc[:,0:2].values   # X_train是一个(m,n)的矩阵,m是样本数,n是特征数
y_train = data.iloc[:,2].values     # y_train是一个(m,)的向量
print(f"X_train: {X_train}")
print(f"y_train: {y_train}")

输出:
在这里插入图片描述

2 逻辑回归模型

f w , b ( x ) = g ( w ⋅ x + b ) f_{\mathbf{w},b}(x) = g(\mathbf{w}\cdot \mathbf{x} + b) fw,b(x)=g(wx+b)

g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1

回忆逻辑回归模型,最外层是一个sigmoid函数,因此我们需要先实现sigmoid函数。

def sigmoid(z):return 1 / (1 + np.exp(-z))
# 可视化一下sigmoid函数
nums = np.arange(-10, 10, step=1)
fig, ax = plt.subplots(1,1,figsize=(4,3))
ax.plot(nums, sigmoid(nums), color='lightgreen')
plt.grid(True)
plt.show()

输出:
在这里插入图片描述
模型实现了,接下来我们需要实现损失函数,以及梯度下降算法。

3 损失函数

l o s s ( f w , b ( x ( i ) ) , y ( i ) ) = ( − y ( i ) log ⁡ ( f w , b ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − f w , b ( x ( i ) ) ) (2) loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) = (-y^{(i)} \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) - \left( 1 - y^{(i)}\right) \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) \tag{2} loss(fw,b(x(i)),y(i))=(y(i)log(fw,b(x(i)))(1y(i))log(1fw,b(x(i)))(2)

  • f w , b ( x ( i ) ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) fw,b(x(i)) is the model’s prediction, while y ( i ) y^{(i)} y(i), which is the actual label

  • f w , b ( x ( i ) ) = g ( w ⋅ x ( i ) + b ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(\mathbf{w} \cdot \mathbf{x^{(i)}} + b) fw,b(x(i))=g(wx(i)+b) where function g g g is the sigmoid function.

    • It might be helpful to first calculate an intermediate variable z w , b ( x ( i ) ) = w ⋅ x ( i ) + b = w 0 x 0 ( i ) + . . . + w n − 1 x n − 1 ( i ) + b z_{\mathbf{w},b}(\mathbf{x}^{(i)}) = \mathbf{w} \cdot \mathbf{x^{(i)}} + b = w_0x^{(i)}_0 + ... + w_{n-1}x^{(i)}_{n-1} + b zw,b(x(i))=wx(i)+b=w0x0(i)+...+wn1xn1(i)+b where n n n is the number of features, before calculating f w , b ( x ( i ) ) = g ( z w , b ( x ( i ) ) ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(z_{\mathbf{w},b}(\mathbf{x}^{(i)})) fw,b(x(i))=g(zw,b(x(i)))
      *
      J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]
def compute_cost_logistic(X, y, w, b):<

这篇关于机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088253

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

mysql索引一(普通索引)

mysql的索引分为两大类,聚簇索引、非聚簇索引。聚簇索引是按照数据存放的物理位置为顺序的,而非聚簇索引则不同。聚簇索引能够提高多行检索的速度、非聚簇索引则对单行检索的速度很快。         在这两大类的索引类型下,还可以降索引分为4个小类型:         1,普通索引:最基本的索引,没有任何限制,是我们经常使用到的索引。         2,唯一索引:与普通索引

ONLYOFFICE 8.1 版本桌面编辑器测评

在现代办公环境中,办公软件的重要性不言而喻。从文档处理到电子表格分析,再到演示文稿制作,强大且高效的办公软件工具能够极大提升工作效率。ONLYOFFICE 作为一个功能全面且开源的办公软件套件,一直以来都受到广大用户的关注与喜爱。而其最新发布的 ONLYOFFICE 8.1 版本桌面编辑器,更是带来了诸多改进和新特性。本文将详细评测 ONLYOFFICE 8.1 版本桌面编辑器,探讨其在功能、用户

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue: