开源C++版AI画图大模型框架stable-diffusion.cpp开发使用初体验

本文主要是介绍开源C++版AI画图大模型框架stable-diffusion.cpp开发使用初体验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

stable-diffusion.cpp是一个C++编写的轻量级开源类AIGC大模型框架,可以支持在消费级普通设备上本地部署运行大模型进行AI画图,以及作为依赖库集成的到应用程序中提供类似于网页版stable-diffusion的功能。

以下基于stable-diffusion.cpp的源码利用C++ api来开发实例demo演示加载本地模型文件输入提示词生成画图,这里采用显卡CUDA加速计算,如果没有显卡也可以直接使用CPU。

项目结构

stable_diffusion_cpp_starter- stable-diffusion.cpp- src|- main.cpp- CMakeLists.txt

有两个前置操作:

  • 在系统安装好CUDA Toolkit
  • 将stable-diffusion.cpp源码根目录的CMakeLists.txt里面SD_CUBLAS选项打开设为ON

不过,如果没有支持CUDA的显卡,默认采用CPU计算,则可以忽略以上两项

CMakeLists.txt

cmake_minimum_required(VERSION 3.15)project(stable_diffusion_cpp_starter)set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)add_subdirectory(stable-diffusion.cpp)include_directories(${CMAKE_CURRENT_SOURCE_DIR}/stable-diffusion.cpp${CMAKE_CURRENT_SOURCE_DIR}/stable-diffusion.cpp/thirdparty
)file(GLOB SRCsrc/*.hsrc/*.cpp
)add_executable(${PROJECT_NAME} ${SRC})target_link_libraries(${PROJECT_NAME} stable-diffusion ${CMAKE_THREAD_LIBS_INIT} # means pthread on unix
)

main.cpp

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <random>
#include <string>
#include <vector>#include "stable-diffusion.h"#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_STATIC
#include "stb_image.h"#define STB_IMAGE_WRITE_IMPLEMENTATION
#define STB_IMAGE_WRITE_STATIC
#include "stb_image_write.h"#define STB_IMAGE_RESIZE_IMPLEMENTATION
#define STB_IMAGE_RESIZE_STATIC
#include "stb_image_resize.h"const char* rng_type_to_str[] = {"std_default","cuda",
};// Names of the sampler method, same order as enum sample_method in stable-diffusion.h
const char* sample_method_str[] = {"euler_a","euler","heun","dpm2","dpm++2s_a","dpm++2m","dpm++2mv2","lcm",
};// Names of the sigma schedule overrides, same order as sample_schedule in stable-diffusion.h
const char* schedule_str[] = {"default","discrete","karras","ays",
};const char* modes_str[] = {"txt2img","img2img","img2vid","convert",
};enum SDMode 
{TXT2IMG,IMG2IMG,IMG2VID,CONVERT,MODE_COUNT
};struct SDParams 
{int n_threads = -1;SDMode mode   = TXT2IMG;std::string model_path;std::string vae_path;std::string taesd_path;std::string esrgan_path;std::string controlnet_path;std::string embeddings_path;std::string stacked_id_embeddings_path;std::string input_id_images_path;sd_type_t wtype = SD_TYPE_COUNT;std::string lora_model_dir;std::string output_path = "output.png";std::string input_path;std::string control_image_path;std::string prompt;std::string negative_prompt;float min_cfg     = 1.0f;float cfg_scale   = 7.0f;float style_ratio = 20.f;int clip_skip     = -1;  // <= 0 represents unspecifiedint width         = 512;int height        = 512;int batch_count   = 1;int video_frames         = 6;int motion_bucket_id     = 127;int fps                  = 6;float augmentation_level = 0.f;sample_method_t sample_method = EULER_A;schedule_t schedule           = DEFAULT;int sample_steps              = 20;float strength                = 0.75f;float control_strength        = 0.9f;rng_type_t rng_type           = CUDA_RNG;int64_t seed                  = 42;bool verbose                  = false;bool vae_tiling               = false;bool control_net_cpu          = false;bool normalize_input          = false;bool clip_on_cpu              = false;bool vae_on_cpu               = false;bool canny_preprocess         = false;bool color                    = false;int upscale_repeats           = 1;
};static std::string sd_basename(const std::string& path) 
{size_t pos = path.find_last_of('/');if (pos != std::string::npos) {return path.substr(pos + 1);}pos = path.find_last_of('\\');if (pos != std::string::npos) {return path.substr(pos + 1);}return path;
}std::string get_image_params(SDParams params, int64_t seed) 
{std::string parameter_string = params.prompt + "\n";if (params.negative_prompt.size() != 0) {parameter_string += "Negative prompt: " + params.negative_prompt + "\n";}parameter_string += "Steps: " + std::to_string(params.sample_steps) + ", ";parameter_string += "CFG scale: " + std::to_string(params.cfg_scale) + ", ";parameter_string += "Seed: " + std::to_string(seed) + ", ";parameter_string += "Size: " + std::to_string(params.width) + "x" + std::to_string(params.height) + ", ";parameter_string += "Model: " + sd_basename(params.model_path) + ", ";parameter_string += "RNG: " + std::string(rng_type_to_str[params.rng_type]) + ", ";parameter_string += "Sampler: " + std::string(sample_method_str[params.sample_method]);if (params.schedule == KARRAS) {parameter_string += " karras";}parameter_string += ", ";parameter_string += "Version: stable-diffusion.cpp";return parameter_string;
}/* Enables Printing the log level tag in color using ANSI escape codes */
void sd_log_cb(enum sd_log_level_t level, const char* log, void* data) 
{SDParams* params = (SDParams*)data;int tag_color;const char* level_str;FILE* out_stream = (level == SD_LOG_ERROR) ? stderr : stdout;if (!log || (!params->verbose && level <= SD_LOG_DEBUG)) return;switch (level) {case SD_LOG_DEBUG:tag_color = 37;level_str = "DEBUG";break;case SD_LOG_INFO:tag_color = 34;level_str = "INFO";break;case SD_LOG_WARN:tag_color = 35;level_str = "WARN";break;case SD_LOG_ERROR:tag_color = 31;level_str = "ERROR";break;default: /* Potential future-proofing */tag_color = 33;level_str = "?????";break;}if (params->color == true) fprintf(out_stream, "\033[%d;1m[%-5s]\033[0m ", tag_color, level_str);else fprintf(out_stream, "[%-5s] ", level_str);fputs(log, out_stream);fflush(out_stream);
}int main(int argc, const char* argv[]) 
{// set sd paramsconst std::string model_path = "./v1-5-pruned-emaonly.ckpt";const std::string img_output_path = "./gen_img.png";const std::string prompt = "a cute little dog with flowers";SDParams params;params.model_path = model_path;params.output_path = img_output_path;params.prompt = prompt;sd_set_log_callback(sd_log_cb, (void*)&params);if (params.mode == CONVERT) {bool success = convert(params.model_path.c_str(), params.vae_path.c_str(), params.output_path.c_str(), params.wtype);if (!success) {fprintf(stderr,"convert '%s'/'%s' to '%s' failed\n",params.model_path.c_str(),params.vae_path.c_str(),params.output_path.c_str());return 1;} else {printf("convert '%s'/'%s' to '%s' success\n",params.model_path.c_str(),params.vae_path.c_str(),params.output_path.c_str());return 0;}}if (params.mode == IMG2VID) {fprintf(stderr, "SVD support is broken, do not use it!!!\n");return 1;}// prepare image bufferbool vae_decode_only          = true;uint8_t* input_image_buffer   = NULL;uint8_t* control_image_buffer = NULL;if (params.mode == IMG2IMG || params.mode == IMG2VID) {vae_decode_only = false;int c              = 0;int width          = 0;int height         = 0;input_image_buffer = stbi_load(params.input_path.c_str(), &width, &height, &c, 3);if (input_image_buffer == NULL) {fprintf(stderr, "load image from '%s' failed\n", params.input_path.c_str());return 1;}if (c < 3) {fprintf(stderr, "the number of channels for the input image must be >= 3, but got %d channels\n", c);free(input_image_buffer);return 1;}if (width <= 0) {fprintf(stderr, "error: the width of image must be greater than 0\n");free(input_image_buffer);return 1;}if (height <= 0) {fprintf(stderr, "error: the height of image must be greater than 0\n");free(input_image_buffer);return 1;}// Resize input image ...if (params.height != height || params.width != width) {printf("resize input image from %dx%d to %dx%d\n", width, height, params.width, params.height);int resized_height = params.height;int resized_width  = params.width;uint8_t* resized_image_buffer = (uint8_t*)malloc(resized_height * resized_width * 3);if (resized_image_buffer == NULL) {fprintf(stderr, "error: allocate memory for resize input image\n");free(input_image_buffer);return 1;}stbir_resize(input_image_buffer, width, height, 0,resized_image_buffer, resized_width, resized_height, 0, STBIR_TYPE_UINT8,3 /*RGB channel*/, STBIR_ALPHA_CHANNEL_NONE, 0,STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,STBIR_FILTER_BOX, STBIR_FILTER_BOX,STBIR_COLORSPACE_SRGB, nullptr);// Save resized resultfree(input_image_buffer);input_image_buffer = resized_image_buffer;}}// init sd contextsd_ctx_t* sd_ctx = new_sd_ctx(params.model_path.c_str(),params.vae_path.c_str(),params.taesd_path.c_str(),params.controlnet_path.c_str(),params.lora_model_dir.c_str(),params.embeddings_path.c_str(),params.stacked_id_embeddings_path.c_str(),vae_decode_only,params.vae_tiling,true,params.n_threads,params.wtype,params.rng_type,params.schedule,params.clip_on_cpu,params.control_net_cpu,params.vae_on_cpu);if (sd_ctx == NULL) {printf("new_sd_ctx_t failed\n");return 1;}sd_image_t* control_image = NULL;if (params.controlnet_path.size() > 0 && params.control_image_path.size() > 0) {int c                = 0;control_image_buffer = stbi_load(params.control_image_path.c_str(), &params.width, &params.height, &c, 3);if (control_image_buffer == NULL) {fprintf(stderr, "load image from '%s' failed\n", params.control_image_path.c_str());return 1;}control_image = new sd_image_t{(uint32_t)params.width,(uint32_t)params.height,3,control_image_buffer};if (params.canny_preprocess) {  // apply preprocessorcontrol_image->data = preprocess_canny(control_image->data,control_image->width,control_image->height,0.08f,0.08f,0.8f,1.0f,false);}}// generate imagesd_image_t* results;if (params.mode == TXT2IMG) {results = txt2img(sd_ctx,params.prompt.c_str(),params.negative_prompt.c_str(),params.clip_skip,params.cfg_scale,params.width,params.height,params.sample_method,params.sample_steps,params.seed,params.batch_count,control_image,params.control_strength,params.style_ratio,params.normalize_input,params.input_id_images_path.c_str());} else {sd_image_t input_image = {(uint32_t)params.width,(uint32_t)params.height,3,input_image_buffer};if (params.mode == IMG2VID) {results = img2vid(sd_ctx,input_image,params.width,params.height,params.video_frames,params.motion_bucket_id,params.fps,params.augmentation_level,params.min_cfg,params.cfg_scale,params.sample_method,params.sample_steps,params.strength,params.seed);if (results == NULL) {printf("generate failed\n");free_sd_ctx(sd_ctx);return 1;}size_t last            = params.output_path.find_last_of(".");std::string dummy_name = last != std::string::npos ? params.output_path.substr(0, last) : params.output_path;for (int i = 0; i < params.video_frames; i++) {if (results[i].data == NULL) continue;std::string final_image_path = i > 0 ? dummy_name + "_" + std::to_string(i + 1) + ".png" : dummy_name + ".png";stbi_write_png(final_image_path.c_str(), results[i].width, results[i].height, results[i].channel,results[i].data, 0, get_image_params(params, params.seed + i).c_str());printf("save result image to '%s'\n", final_image_path.c_str());free(results[i].data);results[i].data = NULL;}free(results);free_sd_ctx(sd_ctx);return 0;} else {results = img2img(sd_ctx,input_image,params.prompt.c_str(),params.negative_prompt.c_str(),params.clip_skip,params.cfg_scale,params.width,params.height,params.sample_method,params.sample_steps,params.strength,params.seed,params.batch_count,control_image,params.control_strength,params.style_ratio,params.normalize_input,params.input_id_images_path.c_str());}}if (results == NULL) {printf("generate failed\n");free_sd_ctx(sd_ctx);return 1;}int upscale_factor = 4;  // unused for RealESRGAN_x4plus_anime_6B.pthif (params.esrgan_path.size() > 0 && params.upscale_repeats > 0) {upscaler_ctx_t* upscaler_ctx = new_upscaler_ctx(params.esrgan_path.c_str(),params.n_threads,params.wtype);if (upscaler_ctx == NULL) printf("new_upscaler_ctx failed\n");else {for (int i = 0; i < params.batch_count; i++) {if (results[i].data == NULL) {continue;}sd_image_t current_image = results[i];for (int u = 0; u < params.upscale_repeats; ++u) {sd_image_t upscaled_image = upscale(upscaler_ctx, current_image, upscale_factor);if (upscaled_image.data == NULL) {printf("upscale failed\n");break;}free(current_image.data);current_image = upscaled_image;}results[i] = current_image;  // Set the final upscaled image as the result}}}size_t last            = params.output_path.find_last_of(".");std::string dummy_name = last != std::string::npos ? params.output_path.substr(0, last) : params.output_path;for (int i = 0; i < params.batch_count; i++) {if (results[i].data == NULL) continue;std::string final_image_path = i > 0 ? dummy_name + "_" + std::to_string(i + 1) + ".png" : dummy_name + ".png";stbi_write_png(final_image_path.c_str(), results[i].width, results[i].height, results[i].channel,results[i].data, 0, get_image_params(params, params.seed + i).c_str());printf("save result image to '%s'\n", final_image_path.c_str());free(results[i].data);results[i].data = NULL;}free(results);free_sd_ctx(sd_ctx);free(control_image_buffer);free(input_image_buffer);return 0;
}

运行结果

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:Device 0: NVIDIA GeForce GTX 1060 with Max-Q Design, compute capability 6.1, VMM: yes
[INFO ] stable-diffusion.cpp:169  - loading model from './v1-5-pruned-emaonly.ckpt'
[INFO ] model.cpp:736  - load ./v1-5-pruned-emaonly.ckpt using checkpoint format
[INFO ] stable-diffusion.cpp:192  - Stable Diffusion 1.x
[INFO ] stable-diffusion.cpp:198  - Stable Diffusion weight type: f32
[INFO ] stable-diffusion.cpp:419  - total params memory size = 2719.24MB (VRAM 2719.24MB, RAM 0.00MB): clip 469.44MB(VRAM), unet 2155.33MB(VRAM), vae 94.47MB(VRAM), controlnet 0.00MB(VRAM), pmid 0.00MB(VRAM)
[INFO ] stable-diffusion.cpp:423  - loading model from './v1-5-pruned-emaonly.ckpt' completed, taking 18.72s
[INFO ] stable-diffusion.cpp:440  - running in eps-prediction mode
[INFO ] stable-diffusion.cpp:556  - Attempting to apply 0 LoRAs
[INFO ] stable-diffusion.cpp:1203 - apply_loras completed, taking 0.00s
ggml_gallocr_reserve_n: reallocating CUDA0 buffer from size 0.00 MiB to 1.40 MiB
ggml_gallocr_reserve_n: reallocating CUDA0 buffer from size 0.00 MiB to 1.40 MiB
[INFO ] stable-diffusion.cpp:1316 - get_learned_condition completed, taking 514 ms
[INFO ] stable-diffusion.cpp:1334 - sampling using Euler A method
[INFO ] stable-diffusion.cpp:1338 - generating image: 1/1 - seed 42
ggml_gallocr_reserve_n: reallocating CUDA0 buffer from size 0.00 MiB to 559.90 MiB|==================================================| 20/20 - 1.40s/it
[INFO ] stable-diffusion.cpp:1381 - sampling completed, taking 35.05s
[INFO ] stable-diffusion.cpp:1389 - generating 1 latent images completed, taking 35.07s
[INFO ] stable-diffusion.cpp:1392 - decoding 1 latents
ggml_gallocr_reserve_n: reallocating CUDA0 buffer from size 0.00 MiB to 1664.00 MiB
[INFO ] stable-diffusion.cpp:1402 - latent 1 decoded, taking 3.03s
[INFO ] stable-diffusion.cpp:1406 - decode_first_stage completed, taking 3.03s
[INFO ] stable-diffusion.cpp:1490 - txt2img completed in 38.64s
save result image to './gen_img.png'

注:

  • stable_diffusion支持的模型文件需要自己去下载,推荐到huggingface官网下载ckpt格式文件
  • 提示词要使用英文
  • 支持文字生成图和以图辅助生成图,参数很多,可以多尝试

源码

stable_diffusion_cpp_starter

这篇关于开源C++版AI画图大模型框架stable-diffusion.cpp开发使用初体验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088143

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma