深度学习:关于损失函数的一些前置知识(PyTorch Loss)

2024-06-23 16:28

本文主要是介绍深度学习:关于损失函数的一些前置知识(PyTorch Loss),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在之前进行实验的时候发现:调用 Pytorch 中的 Loss 函数之前如果对其没有一定的了解,可能会影响实验效果和调试效率。以 CrossEntropyLoss 为例,最初设计实验的时候没有注意到该函数默认返回的是均值,以为是总和,于是最后计算完 Loss 之后,手动做了个均值,导致实际 Loss 被错误缩放,实验效果不佳,在后来 Debug 排除代码模型架构问题的时候才发觉这一点,着实花费了不少时间。

所以闲暇时准备写一下 Pytorch 中 Loss 函数相关的知识,希望能对初入深度学习的学子们有所帮助,少踩点坑。

这篇文章是用于后续理解的前置知识,在之后有提到新的专业名词时会进行补充。
文章大多以分类模型为例进行叙述。

文章目录

  • 什么是 Logits?
    • Logits 和 Softmax
  • 什么是 One-Hot 编码?
    • 类别不是整数怎么办?

什么是 Logits?

Logits 是指神经网络的最后一个线性层(全连接层)的未经过任何激活函数(例如 softmax 或 sigmoid)处理的输出,可以是任意实数,在分类的任务中,logits 通常是在进行多类别分类任务时的原始输出。

Logits 和 Softmax

在多类别分类问题中,logits 通常会被传递给 softmax 函数,softmax 函数将这些 logits 转换为概率分布:将任意实数的 logits 转换为 [0, 1] 之间的概率值,并且这些概率值的和为 1。

代码示例

为了更好地理解 logits 和 softmax 之间的关系,下面是一个简单的代码示例:

import torch
import torch.nn.functional as F# 样例:分类神经网络,便于对照理解
class Classifier(nn.Module):def __init__(self, input_size, hidden_size, num_classes=3):super(Classifier, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)  # 输入层到隐藏层self.fc2 = nn.Linear(hidden_size, num_classes)  # 隐藏层到输出层def forward(self, x):out = self.fc1(x)out = F.relu(out)  # ReLU 激活函数logits = self.fc2(out)  # 输出层,不经过 softmaxreturn logits# 假设这是分类神经网络的输出 logits
logits = torch.tensor([[2.0, 1.0, 0.1], [1.0, 3.0, 0.2]])# 使用 softmax 函数将 logits 转换为概率分布
probabilities = F.softmax(logits, dim=1)print("Logits:")
print(logits)
print("\nProbabilities after applying softmax:")
print(probabilities)
>>> Logits:
>>> tensor([[2.0000, 1.0000, 0.1000],
>>>         [1.0000, 3.0000, 0.2000]])>>> Probabilities after applying softmax:
>>> tensor([[0.6590, 0.2424, 0.0986],
>>>         [0.1131, 0.8360, 0.0508]])

输出解释

  1. Logits: [[2.0, 1.0, 0.1], [1.0, 3.0, 0.2]] 是神经网络的输出,未经过 softmax 处理。
  2. Softmax: softmax 函数将 logits 转换为概率分布,每个分布的概率值和为 1。

什么是 One-Hot 编码?

初入深度学习领域的人大多都会有这个疑问:这些所说的类别,究竟是怎么表示成向量的?

One-Hot 是一个很直观的形容,但我当时看到并猜测到相应概念的时候,还是不敢确定,因为太直白了,总觉得编码成向量的过程应该没有这么简单,然而 One-Hot 就是如此,深度学习不是一蹴而就的,看似复杂的概念最初也是由一个个直白的想法发展得来。

具体来说,One-Hot 编码对于每个类别,使用一个与类别数相同长度二进制向量,每个位置对应一个类别。其中,只有一个位置的值为 1(这就是 “One-Hot” 的含义),表示属于该类别,其余位置的值为 0。

例如,对于三个类别的分类问题(类别 A、B 和 C),使用 One-Hot 编码可得:

  • 类别 A: [1, 0, 0]
  • 类别 B: [0, 1, 0]
  • 类别 C: [0, 0, 1]

代码示例

import torch# 假设我们有三个类别:0, 1, 2
num_classes = 3# 样本标签
labels = torch.tensor([0, 2, 1, 0])# 将标签转换为 One-Hot 编码
one_hot_labels = torch.nn.functional.one_hot(labels, num_classes)print("Labels:")
print(labels)
print("\nOne-Hot Encoded Labels:")
print(one_hot_labels)
>>> Labels:
>>> tensor([0, 2, 1, 0])>>> One-Hot Encoded Labels:
>>> tensor([[1, 0, 0],
>>>         [0, 0, 1],
>>>         [0, 1, 0],
>>>         [1, 0, 0]])

输出解释

  1. Labels: [0, 2, 1, 0] 是我们初始的类别标签。
  2. One-Hot Encoded Labels: [[1, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]] 是将标签转换为 One-Hot 编码后的结果。每个向量中只有一个位置的值为 1(One-Hot)。

类别不是整数怎么办?

看了代码示例,可能会有一个疑问:类别大多不会是整数而是字符,应该怎么编码?或许你心中已经有了一个很直白的答案:那就做一个映射,将类别用整数编码,然后再将这些整数标签转换为 One-Hot 编码。

的确可以这样。

代码示例

import torch# 类别映射:A -> 0, B -> 1, C -> 2
category_map = {'A': 0, 'B': 1, 'C': 2}# 样本类别标签
labels = ['A', 'C', 'B', 'A']# 将类别标签转换为整数标签
integer_labels = torch.tensor([category_map[label] for label in labels])# 将整数标签转换为 One-Hot 编码
num_classes = len(category_map)
one_hot_labels = torch.nn.functional.one_hot(integer_labels, num_classes)print("Labels:")
print(labels)
print("\nInteger Labels:")
print(integer_labels)
print("\nOne-Hot Encoded Labels:")
print(one_hot_labels)
>>> Labels:
>>> ['A', 'C', 'B', 'A']>>> Integer Labels:
>>> tensor([0, 2, 1, 0])>>> One-Hot Encoded Labels:
>>> tensor([[1, 0, 0],
>>>         [0, 0, 1],
>>>         [0, 1, 0],
>>>         [1, 0, 0]])

解释

  1. Labels: ['A', 'C', 'B', 'A'] 是我们初始的类别标签。
  2. Integer Labels: [0, 2, 1, 0] 是将类别标签映射到整数后的结果。A 对应 0,B 对应 1,C 对应 2。
  3. One-Hot Encoded Labels: [[1, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]] 是将整数标签转换为 One-Hot 编码后的结果。每个向量中只有一个位置的值为 1,表示该样本的类别,其余位置的值为 0。

这篇关于深度学习:关于损失函数的一些前置知识(PyTorch Loss)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087670

相关文章

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日