深度学习:关于损失函数的一些前置知识(PyTorch Loss)

2024-06-23 16:28

本文主要是介绍深度学习:关于损失函数的一些前置知识(PyTorch Loss),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在之前进行实验的时候发现:调用 Pytorch 中的 Loss 函数之前如果对其没有一定的了解,可能会影响实验效果和调试效率。以 CrossEntropyLoss 为例,最初设计实验的时候没有注意到该函数默认返回的是均值,以为是总和,于是最后计算完 Loss 之后,手动做了个均值,导致实际 Loss 被错误缩放,实验效果不佳,在后来 Debug 排除代码模型架构问题的时候才发觉这一点,着实花费了不少时间。

所以闲暇时准备写一下 Pytorch 中 Loss 函数相关的知识,希望能对初入深度学习的学子们有所帮助,少踩点坑。

这篇文章是用于后续理解的前置知识,在之后有提到新的专业名词时会进行补充。
文章大多以分类模型为例进行叙述。

文章目录

  • 什么是 Logits?
    • Logits 和 Softmax
  • 什么是 One-Hot 编码?
    • 类别不是整数怎么办?

什么是 Logits?

Logits 是指神经网络的最后一个线性层(全连接层)的未经过任何激活函数(例如 softmax 或 sigmoid)处理的输出,可以是任意实数,在分类的任务中,logits 通常是在进行多类别分类任务时的原始输出。

Logits 和 Softmax

在多类别分类问题中,logits 通常会被传递给 softmax 函数,softmax 函数将这些 logits 转换为概率分布:将任意实数的 logits 转换为 [0, 1] 之间的概率值,并且这些概率值的和为 1。

代码示例

为了更好地理解 logits 和 softmax 之间的关系,下面是一个简单的代码示例:

import torch
import torch.nn.functional as F# 样例:分类神经网络,便于对照理解
class Classifier(nn.Module):def __init__(self, input_size, hidden_size, num_classes=3):super(Classifier, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)  # 输入层到隐藏层self.fc2 = nn.Linear(hidden_size, num_classes)  # 隐藏层到输出层def forward(self, x):out = self.fc1(x)out = F.relu(out)  # ReLU 激活函数logits = self.fc2(out)  # 输出层,不经过 softmaxreturn logits# 假设这是分类神经网络的输出 logits
logits = torch.tensor([[2.0, 1.0, 0.1], [1.0, 3.0, 0.2]])# 使用 softmax 函数将 logits 转换为概率分布
probabilities = F.softmax(logits, dim=1)print("Logits:")
print(logits)
print("\nProbabilities after applying softmax:")
print(probabilities)
>>> Logits:
>>> tensor([[2.0000, 1.0000, 0.1000],
>>>         [1.0000, 3.0000, 0.2000]])>>> Probabilities after applying softmax:
>>> tensor([[0.6590, 0.2424, 0.0986],
>>>         [0.1131, 0.8360, 0.0508]])

输出解释

  1. Logits: [[2.0, 1.0, 0.1], [1.0, 3.0, 0.2]] 是神经网络的输出,未经过 softmax 处理。
  2. Softmax: softmax 函数将 logits 转换为概率分布,每个分布的概率值和为 1。

什么是 One-Hot 编码?

初入深度学习领域的人大多都会有这个疑问:这些所说的类别,究竟是怎么表示成向量的?

One-Hot 是一个很直观的形容,但我当时看到并猜测到相应概念的时候,还是不敢确定,因为太直白了,总觉得编码成向量的过程应该没有这么简单,然而 One-Hot 就是如此,深度学习不是一蹴而就的,看似复杂的概念最初也是由一个个直白的想法发展得来。

具体来说,One-Hot 编码对于每个类别,使用一个与类别数相同长度二进制向量,每个位置对应一个类别。其中,只有一个位置的值为 1(这就是 “One-Hot” 的含义),表示属于该类别,其余位置的值为 0。

例如,对于三个类别的分类问题(类别 A、B 和 C),使用 One-Hot 编码可得:

  • 类别 A: [1, 0, 0]
  • 类别 B: [0, 1, 0]
  • 类别 C: [0, 0, 1]

代码示例

import torch# 假设我们有三个类别:0, 1, 2
num_classes = 3# 样本标签
labels = torch.tensor([0, 2, 1, 0])# 将标签转换为 One-Hot 编码
one_hot_labels = torch.nn.functional.one_hot(labels, num_classes)print("Labels:")
print(labels)
print("\nOne-Hot Encoded Labels:")
print(one_hot_labels)
>>> Labels:
>>> tensor([0, 2, 1, 0])>>> One-Hot Encoded Labels:
>>> tensor([[1, 0, 0],
>>>         [0, 0, 1],
>>>         [0, 1, 0],
>>>         [1, 0, 0]])

输出解释

  1. Labels: [0, 2, 1, 0] 是我们初始的类别标签。
  2. One-Hot Encoded Labels: [[1, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]] 是将标签转换为 One-Hot 编码后的结果。每个向量中只有一个位置的值为 1(One-Hot)。

类别不是整数怎么办?

看了代码示例,可能会有一个疑问:类别大多不会是整数而是字符,应该怎么编码?或许你心中已经有了一个很直白的答案:那就做一个映射,将类别用整数编码,然后再将这些整数标签转换为 One-Hot 编码。

的确可以这样。

代码示例

import torch# 类别映射:A -> 0, B -> 1, C -> 2
category_map = {'A': 0, 'B': 1, 'C': 2}# 样本类别标签
labels = ['A', 'C', 'B', 'A']# 将类别标签转换为整数标签
integer_labels = torch.tensor([category_map[label] for label in labels])# 将整数标签转换为 One-Hot 编码
num_classes = len(category_map)
one_hot_labels = torch.nn.functional.one_hot(integer_labels, num_classes)print("Labels:")
print(labels)
print("\nInteger Labels:")
print(integer_labels)
print("\nOne-Hot Encoded Labels:")
print(one_hot_labels)
>>> Labels:
>>> ['A', 'C', 'B', 'A']>>> Integer Labels:
>>> tensor([0, 2, 1, 0])>>> One-Hot Encoded Labels:
>>> tensor([[1, 0, 0],
>>>         [0, 0, 1],
>>>         [0, 1, 0],
>>>         [1, 0, 0]])

解释

  1. Labels: ['A', 'C', 'B', 'A'] 是我们初始的类别标签。
  2. Integer Labels: [0, 2, 1, 0] 是将类别标签映射到整数后的结果。A 对应 0,B 对应 1,C 对应 2。
  3. One-Hot Encoded Labels: [[1, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]] 是将整数标签转换为 One-Hot 编码后的结果。每个向量中只有一个位置的值为 1,表示该样本的类别,其余位置的值为 0。

这篇关于深度学习:关于损失函数的一些前置知识(PyTorch Loss)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087670

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

[职场] 公务员的利弊分析 #知识分享#经验分享#其他

公务员的利弊分析     公务员作为一种稳定的职业选择,一直备受人们的关注。然而,就像任何其他职业一样,公务员职位也有其利与弊。本文将对公务员的利弊进行分析,帮助读者更好地了解这一职业的特点。 利: 1. 稳定的职业:公务员职位通常具有较高的稳定性,一旦进入公务员队伍,往往可以享受到稳定的工作环境和薪资待遇。这对于那些追求稳定的人来说,是一个很大的优势。 2. 薪资福利优厚:公务员的薪资和

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘