深度学习:关于损失函数的一些前置知识(PyTorch Loss)

2024-06-23 16:28

本文主要是介绍深度学习:关于损失函数的一些前置知识(PyTorch Loss),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在之前进行实验的时候发现:调用 Pytorch 中的 Loss 函数之前如果对其没有一定的了解,可能会影响实验效果和调试效率。以 CrossEntropyLoss 为例,最初设计实验的时候没有注意到该函数默认返回的是均值,以为是总和,于是最后计算完 Loss 之后,手动做了个均值,导致实际 Loss 被错误缩放,实验效果不佳,在后来 Debug 排除代码模型架构问题的时候才发觉这一点,着实花费了不少时间。

所以闲暇时准备写一下 Pytorch 中 Loss 函数相关的知识,希望能对初入深度学习的学子们有所帮助,少踩点坑。

这篇文章是用于后续理解的前置知识,在之后有提到新的专业名词时会进行补充。
文章大多以分类模型为例进行叙述。

文章目录

  • 什么是 Logits?
    • Logits 和 Softmax
  • 什么是 One-Hot 编码?
    • 类别不是整数怎么办?

什么是 Logits?

Logits 是指神经网络的最后一个线性层(全连接层)的未经过任何激活函数(例如 softmax 或 sigmoid)处理的输出,可以是任意实数,在分类的任务中,logits 通常是在进行多类别分类任务时的原始输出。

Logits 和 Softmax

在多类别分类问题中,logits 通常会被传递给 softmax 函数,softmax 函数将这些 logits 转换为概率分布:将任意实数的 logits 转换为 [0, 1] 之间的概率值,并且这些概率值的和为 1。

代码示例

为了更好地理解 logits 和 softmax 之间的关系,下面是一个简单的代码示例:

import torch
import torch.nn.functional as F# 样例:分类神经网络,便于对照理解
class Classifier(nn.Module):def __init__(self, input_size, hidden_size, num_classes=3):super(Classifier, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)  # 输入层到隐藏层self.fc2 = nn.Linear(hidden_size, num_classes)  # 隐藏层到输出层def forward(self, x):out = self.fc1(x)out = F.relu(out)  # ReLU 激活函数logits = self.fc2(out)  # 输出层,不经过 softmaxreturn logits# 假设这是分类神经网络的输出 logits
logits = torch.tensor([[2.0, 1.0, 0.1], [1.0, 3.0, 0.2]])# 使用 softmax 函数将 logits 转换为概率分布
probabilities = F.softmax(logits, dim=1)print("Logits:")
print(logits)
print("\nProbabilities after applying softmax:")
print(probabilities)
>>> Logits:
>>> tensor([[2.0000, 1.0000, 0.1000],
>>>         [1.0000, 3.0000, 0.2000]])>>> Probabilities after applying softmax:
>>> tensor([[0.6590, 0.2424, 0.0986],
>>>         [0.1131, 0.8360, 0.0508]])

输出解释

  1. Logits: [[2.0, 1.0, 0.1], [1.0, 3.0, 0.2]] 是神经网络的输出,未经过 softmax 处理。
  2. Softmax: softmax 函数将 logits 转换为概率分布,每个分布的概率值和为 1。

什么是 One-Hot 编码?

初入深度学习领域的人大多都会有这个疑问:这些所说的类别,究竟是怎么表示成向量的?

One-Hot 是一个很直观的形容,但我当时看到并猜测到相应概念的时候,还是不敢确定,因为太直白了,总觉得编码成向量的过程应该没有这么简单,然而 One-Hot 就是如此,深度学习不是一蹴而就的,看似复杂的概念最初也是由一个个直白的想法发展得来。

具体来说,One-Hot 编码对于每个类别,使用一个与类别数相同长度二进制向量,每个位置对应一个类别。其中,只有一个位置的值为 1(这就是 “One-Hot” 的含义),表示属于该类别,其余位置的值为 0。

例如,对于三个类别的分类问题(类别 A、B 和 C),使用 One-Hot 编码可得:

  • 类别 A: [1, 0, 0]
  • 类别 B: [0, 1, 0]
  • 类别 C: [0, 0, 1]

代码示例

import torch# 假设我们有三个类别:0, 1, 2
num_classes = 3# 样本标签
labels = torch.tensor([0, 2, 1, 0])# 将标签转换为 One-Hot 编码
one_hot_labels = torch.nn.functional.one_hot(labels, num_classes)print("Labels:")
print(labels)
print("\nOne-Hot Encoded Labels:")
print(one_hot_labels)
>>> Labels:
>>> tensor([0, 2, 1, 0])>>> One-Hot Encoded Labels:
>>> tensor([[1, 0, 0],
>>>         [0, 0, 1],
>>>         [0, 1, 0],
>>>         [1, 0, 0]])

输出解释

  1. Labels: [0, 2, 1, 0] 是我们初始的类别标签。
  2. One-Hot Encoded Labels: [[1, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]] 是将标签转换为 One-Hot 编码后的结果。每个向量中只有一个位置的值为 1(One-Hot)。

类别不是整数怎么办?

看了代码示例,可能会有一个疑问:类别大多不会是整数而是字符,应该怎么编码?或许你心中已经有了一个很直白的答案:那就做一个映射,将类别用整数编码,然后再将这些整数标签转换为 One-Hot 编码。

的确可以这样。

代码示例

import torch# 类别映射:A -> 0, B -> 1, C -> 2
category_map = {'A': 0, 'B': 1, 'C': 2}# 样本类别标签
labels = ['A', 'C', 'B', 'A']# 将类别标签转换为整数标签
integer_labels = torch.tensor([category_map[label] for label in labels])# 将整数标签转换为 One-Hot 编码
num_classes = len(category_map)
one_hot_labels = torch.nn.functional.one_hot(integer_labels, num_classes)print("Labels:")
print(labels)
print("\nInteger Labels:")
print(integer_labels)
print("\nOne-Hot Encoded Labels:")
print(one_hot_labels)
>>> Labels:
>>> ['A', 'C', 'B', 'A']>>> Integer Labels:
>>> tensor([0, 2, 1, 0])>>> One-Hot Encoded Labels:
>>> tensor([[1, 0, 0],
>>>         [0, 0, 1],
>>>         [0, 1, 0],
>>>         [1, 0, 0]])

解释

  1. Labels: ['A', 'C', 'B', 'A'] 是我们初始的类别标签。
  2. Integer Labels: [0, 2, 1, 0] 是将类别标签映射到整数后的结果。A 对应 0,B 对应 1,C 对应 2。
  3. One-Hot Encoded Labels: [[1, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]] 是将整数标签转换为 One-Hot 编码后的结果。每个向量中只有一个位置的值为 1,表示该样本的类别,其余位置的值为 0。

这篇关于深度学习:关于损失函数的一些前置知识(PyTorch Loss)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087670

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确