Strassen矩阵乘法简要解析(第4章:分治策略)

2024-06-23 15:08

本文主要是介绍Strassen矩阵乘法简要解析(第4章:分治策略),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Strassen矩阵乘法简要解析

Strassen矩阵乘法具体描述如下:

两个n×n 阶的矩阵A与B的乘积是另一个n×n 阶矩阵C,C可表示为假如每一个C(i, j) 都用此公式计算,则计算C所需要的操作次数为n3 m+n2 (n- 1) a,其中m表示一次乘法,a 表示一次加法或减法。

为了使讨论简便,假设n 是2的幂(也就是说, n是1,2,4,8,1 6,...)。

首先,假设n= 1时是一个小问题,n> 1时为一个大问题。后面将根据需要随时修改这个假设。对于1×1阶的小矩阵,可以通过将两矩阵中的两个元素直接相乘而得到结果。

考察一个n> 1的大问题。可以将这样的矩阵分成4个n/ 2×n/ 2阶的矩阵A1,A2,A3,和A4。当n 大于1且n 是2的幂时,n/ 2也是2的幂。因此较小矩阵也满足前面对矩阵大小的假设。矩阵Bi 和Ci 的定义与此类似.

假定strassen矩阵分割方案仅用于n≥8的矩阵乘法,而对于n<8的矩阵乘法则直接利用公式进行计算。则n= 8时,8×8矩阵相乘需要7次4×4矩阵乘法和1 8次4×4矩阵加/减法。每次矩阵乘法需花费6 4m+ 4 8a次操作,每次矩阵加法或减法需花费1 6a次操作。因此总的操作次数为7 ( 6 4m+ 4 8a) + 1 8 ( 1 6a) = 4 4 8m+ 6 2 4a。而使用直接计算方法,则需要5 1 2m+ 4 4 8a次操作。要使S t r a s s e n方法比直接计算方法快,至少要求5 1 2-4 4 8次乘法的开销比6 2 4-4 4 8次加/减法的开销大。或者说一次乘法的开销应该大于近似2 . 7 5次加/减法的开销。

假定n<1 6的矩阵是一个“小”问题,strassen的分解方案仅仅用于n≥1 6的情况,对于n<1 6的矩阵相乘,直接利用公式。则当n= 1 6时使用分而治之算法需要7 ( 5 1 2m+ 4 4 8a) +1 8 ( 6 4a) = 3 5 8 4m+ 4 2 8 8a次操作。直接计算时需要4 0 9 6m+ 3 8 4 0a次操作。若一次乘法的开销与一次加/减法的开销相同,则strassen方法需要7872次操作及用于问题分解的额外时间,而直接计算方法则需要7936次操作加上程序中执行for循环以及其他语句所花费的时间。即使直接计算方法所需要的操作次数比strassen方法少,但由于直接计算方法需要更多的额外开销,因此它也不见得会比strassen方法快。

n 的值越大,Strassen 方法与直接计算方法所用的操作次数的差异就越大,因此对于足够大的n,Strassen 方法将更快。设t (n) 表示使用Strassen 分而治之方法所需的时间。因为大的矩阵会被递归地分割成小矩阵直到每个矩阵的大小小于或等于k(k至少为8,也许更大,具体值由计算机的性能决定). 用迭代方法计算,可得t(n) = (nlog27)。因为log27 ≈2 . 8 1,所以与直接计算方法的复杂性(n3)相比,分而治之矩阵乘法算法有较大的改进。

再次说明:

矩阵C = AB,可写为
C11 = A11B11 + A12B21
C12 = A11B12 + A12B22
C21 = A21B11 + A22B21
C22 = A21B12 + A22B22
如果A、B、C都是二阶矩阵,则共需要8次乘法和4次加法。如果阶大于2,可以将矩阵分块进行计算。耗费的时间是O(nE3)。

要改进算法计算时间的复杂度,必须减少乘法运算次数。按分治法的思想,Strassen提出一种新的方法,用7次乘法完成2阶矩阵的乘法,算法如下:
M1 = A11(B12 - B12)
M2 = (A11 + A12)B22
M3 = (A21 + A22)B11
M4 = A22(B21 - B11)
M5 = (A11 + A22)(B11 + B22)
M6 = (A12 - A22)(B21 + B22)
M7 = (A11 - A21)(B11 + B12)
完成了7次乘法,再做如下加法:
C11 = M5 + M4 - M2 + M6
C12 = M1 + M2
C21 = M3 + M4
C22 = M5 + M1 - M3 - M7
全部计算使用了7次乘法和18次加减法,计算时间降低到O(nE2.81)。计算复杂性得到较大改进。

 

STRASSEN矩阵乘法算法如下:

#include <iostream.h>

const int N=8; //常量N用来定义矩阵的大小

void main()
{

    void STRASSEN(int n,float A[][N],float B[][N],float C[][N]); 
    void input(int n,float p[][N]);
    void output(int n,float C[][N]);                    //函数声明部分

    float A[N][N],B[N][N],C[N][N];  //定义三个矩阵A,B,C

    cout<<"现在录入矩阵A[N][N]:"<<endl<<endl;
    input(N,A);
    cout<<endl<<"现在录入矩阵B[N][N]:"<<endl<<endl;
    input(N,B);                         //录入数组

    STRASSEN(N,A,B,C);   //调用STRASSEN函数计算

    output(N,C);  //输出计算结果
}


void input(int n,float p[][N])  //矩阵输入函数
{
    int i,j;

    for(i=0;i<n;i++)
    {
        cout<<"请输入第"<<i+1<<"行"<<endl;
        for(j=0;j<n;j++)
            cin>>p[i][j];
    }
}

void output(int n,float C[][N]) //据矩阵输出函数
{
    int i,j;
    cout<<"输出矩阵:"<<endl;
    for(i=0;i<n;i++)
    {
        cout<<endl;
        for(j=0;j<n;j++)
            cout<<C[i][j]<<"  ";
    }
    cout<<endl<<endl;

}

void MATRIX_MULTIPLY(float A[][N],float B[][N],float C[][N])  //按通常的矩阵乘法计算C=AB的子算法(仅做2阶)
{
    int i,j,t;
    for(i=0;i<2;i++)                     //计算A*B-->C
        for(j=0;j<2;j++)
        {    
            C[i][j]=0;                   //计算完一个C[i][j],C[i][j]应重新赋值为零
            for(t=0;t<2;t++)
            C[i][j]=C[i][j]+A[i][t]*B[t][j];
        }
}

void MATRIX_ADD(int n,float X[][N],float Y[][N],float Z[][N]) //矩阵加法函数X+Y—>Z
{
    int i,j;
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            Z[i][j]=X[i][j]+Y[i][j];
}

void MATRIX_SUB(int n,float X[][N],float Y[][N],float Z[][N]) //矩阵减法函数X-Y—>Z
{
    int i,j;
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            Z[i][j]=X[i][j]-Y[i][j];

}


void STRASSEN(int n,float A[][N],float B[][N],float C[][N])  //STRASSEN函数(递归)
{
    float A11[N][N],A12[N][N],A21[N][N],A22[N][N];
    float B11[N][N],B12[N][N],B21[N][N],B22[N][N];
    float C11[N][N],C12[N][N],C21[N][N],C22[N][N];
    float M1[N][N],M2[N][N],M3[N][N],M4[N][N],M5[N][N],M6[N][N],M7[N][N];
    float AA[N][N],BB[N][N],MM1[N][N],MM2[N][N];

    int i,j;//,x;


    if (n==2)
        MATRIX_MULTIPLY(A,B,C);//按通常的矩阵乘法计算C=AB的子算法(仅做2阶)
    else
    {
        for(i=0;i<n/2;i++)                         
            for(j=0;j<n/2;j++)

                {
                    A11[i][j]=A[i][j];
                    A12[i][j]=A[i][j+n/2];
                    A21[i][j]=A[i+n/2][j];
                    A22[i][j]=A[i+n/2][j+n/2];
                    B11[i][j]=B[i][j];
                    B12[i][j]=B[i][j+n/2];
                    B21[i][j]=B[i+n/2][j];
                    B22[i][j]=B[i+n/2][j+n/2];
                }                                   //将矩阵A和B式分为四块




    MATRIX_SUB(n/2,B12,B22,BB);                       

    STRASSEN(n/2,A11,BB,M1);//M1=A11(B12-B22)

    MATRIX_ADD(n/2,A11,A12,AA);
    STRASSEN(n/2,AA,B22,M2);//M2=(A11+A12)B22

    MATRIX_ADD(n/2,A21,A22,AA);
    STRASSEN(n/2,AA,B11,M3);//M3=(A21+A22)B11

    MATRIX_SUB(n/2,B21,B11,BB);
    STRASSEN(n/2,A22,BB,M4);//M4=A22(B21-B11)

    MATRIX_ADD(n/2,A11,A22,AA);
    MATRIX_ADD(n/2,B11,B22,BB);
    STRASSEN(n/2,AA,BB,M5);//M5=(A11+A22)(B11+B22)

    MATRIX_SUB(n/2,A12,A22,AA);
    MATRIX_SUB(n/2,B21,B22,BB);
    STRASSEN(n/2,AA,BB,M6);//M6=(A12-A22)(B21+B22)

    MATRIX_SUB(n/2,A11,A21,AA);
    MATRIX_SUB(n/2,B11,B12,BB);
    STRASSEN(n/2,AA,BB,M7);//M7=(A11-A21)(B11+B12)
                                                    //计算M1,M2,M3,M4,M5,M6,M7(递归部分)


    MATRIX_ADD(N/2,M5,M4,MM1);                        
    MATRIX_SUB(N/2,M2,M6,MM2);
    MATRIX_SUB(N/2,MM1,MM2,C11);//C11=M5+M4-M2+M6

    MATRIX_ADD(N/2,M1,M2,C12);//C12=M1+M2

    MATRIX_ADD(N/2,M3,M4,C21);//C21=M3+M4

    MATRIX_ADD(N/2,M5,M1,MM1);
    MATRIX_ADD(N/2,M3,M7,MM2);
    MATRIX_SUB(N/2,MM1,MM2,C22);//C22=M5+M1-M3-M7

    for(i=0;i<n/2;i++)
        for(j=0;j<n/2;j++)
        {
            C[i][j]=C11[i][j];
            C[i][j+n/2]=C12[i][j];
            C[i+n/2][j]=C21[i][j];
            C[i+n/2][j+n/2]=C22[i][j];
        }                                            //计算结果送回C[N][N]

    }

}

这篇关于Strassen矩阵乘法简要解析(第4章:分治策略)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087499

相关文章

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St