动手学深度学习(Pytorch版)代码实践 -卷积神经网络-24深度卷积神经网络AlexNet

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -卷积神经网络-24深度卷积神经网络AlexNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

24深度卷积神经网络AlexNet

在这里插入图片描述

import torch
from torch import nn
import liliPytorch as lp
import liliPytorch as lp
import matplotlib.pyplot as pltdropout1 = 0.5
#Alexnet架构
net = nn.Sequential(nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1),nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1),nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),nn.Linear(6400, 4096),nn.ReLU(),nn.Dropout(dropout1),nn.Linear(4096, 4096),nn.ReLU(),nn.Dropout(dropout1),nn.Linear(4096,10)
)#魔改一下
lilinet = nn.Sequential(nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),nn.Linear(6400, 4096),nn.ReLU(),nn.Dropout(dropout1),nn.Linear(4096, 4096),nn.ReLU(),nn.Dropout(dropout1),nn.Linear(4096,10)
)# 通过在每一层打印输出的形状,我们可以检查模型
X = torch.rand(size=(1, 1, 224, 224), dtype=torch.float32) 
for layer in net:X = layer(X) # 将输入依次通过每一层print(layer.__class__.__name__, 'output shape: \t', X.shape) # 打印每一层的输出形状
"""
Conv2d output shape:     torch.Size([1, 96, 54, 54])
ReLU output shape:       torch.Size([1, 96, 54, 54])
MaxPool2d output shape:          torch.Size([1, 96, 26, 26])
Conv2d output shape:     torch.Size([1, 256, 26, 26])
ReLU output shape:       torch.Size([1, 256, 26, 26])
MaxPool2d output shape:          torch.Size([1, 256, 12, 12])
Conv2d output shape:     torch.Size([1, 384, 12, 12])
ReLU output shape:       torch.Size([1, 384, 12, 12])
Conv2d output shape:     torch.Size([1, 384, 12, 12])
ReLU output shape:       torch.Size([1, 384, 12, 12])
Conv2d output shape:     torch.Size([1, 256, 12, 12])
ReLU output shape:       torch.Size([1, 256, 12, 12])
MaxPool2d output shape:          torch.Size([1, 256, 5, 5])
Flatten output shape:    torch.Size([1, 6400])
Linear output shape:     torch.Size([1, 4096])
ReLU output shape:       torch.Size([1, 4096])
Dropout output shape:    torch.Size([1, 4096])
Linear output shape:     torch.Size([1, 4096])
ReLU output shape:       torch.Size([1, 4096])
Dropout output shape:    torch.Size([1, 4096])
Linear output shape:     torch.Size([1, 10])
"""#读取数据集
batch_size = 64
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size,  resize=224) # 加载Fashion-MNIST数据集#Alexnet架构
# lr, num_epochs = 0.01, 10
# batch_size = 128
# lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
# loss 0.329, train acc 0.879, test acc 0.883# 魔改
lr, num_epochs = 0.1, 10
lp.train_ch6(lilinet, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show() # 显示训练曲线#lr, num_epochs = 0.01, 10
#batch_size = 128
#loss 0.356, train acc 0.868, test acc 0.870#lr, num_epochs = 0.1, 10
#batch_size = 64
#loss 0.212, train acc 0.920, test acc 0.903

运行结果:
在这里插入图片描述

这篇关于动手学深度学习(Pytorch版)代码实践 -卷积神经网络-24深度卷积神经网络AlexNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086463

相关文章

jdk1.8的Jenkins安装配置实践

《jdk1.8的Jenkins安装配置实践》Jenkins是一款流行的开源持续集成工具,支持自动构建、测试和部署,通过Jenkins,开发团队可以实现代码提交后自动进行构建、测试,并将构建结果分发到测... 目录Jenkins介绍Jenkins环境搭建Jenkins安装配置Jenkins插件安装Git安装配

SpringBoot的全局异常拦截实践过程

《SpringBoot的全局异常拦截实践过程》SpringBoot中使用@ControllerAdvice和@ExceptionHandler实现全局异常拦截,@RestControllerAdvic... 目录@RestControllerAdvice@ResponseStatus(...)@Except

Java 接口定义变量的示例代码

《Java接口定义变量的示例代码》文章介绍了Java接口中的变量和方法,接口中的变量必须是publicstaticfinal的,用于定义常量,而方法默认是publicabstract的,必须由实现类... 在 Java 中,接口是一种抽象类型,用于定义类必须实现的方法。接口可以包含常量和方法,但不能包含实例

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

SpringBoot简单整合ElasticSearch实践

《SpringBoot简单整合ElasticSearch实践》Elasticsearch支持结构化和非结构化数据检索,通过索引创建和倒排索引文档,提高搜索效率,它基于Lucene封装,分为索引库、类型... 目录一:ElasticSearch支持对结构化和非结构化的数据进行检索二:ES的核心概念Index: