Python 全栈系列255 UCS实践:按ID同步数据

2024-06-23 00:12

本文主要是介绍Python 全栈系列255 UCS实践:按ID同步数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

这是一个常见的使用场景,实测下来效果良好。

内容

1 实验场景

将库中所有的数据取出,送到队列

本质上,这是一种单向不返回的模式。除了在遍历全库有用,在进行回测时也是一样的,时间就是单向不返回的。

通过UCS,将任意离散的数据记录归并到了一个更大的单位下。按照brick、block、part、shard四个层级,使得数据的管理兼顾到人的记忆特性,以及程序批量处理的效率。一个brick通常代表一万条数据,之后以千不断进位。到part级别已经是十亿的容量了。

UCS将所有数据的编号分为三类:

  • 1 数值类。从0开始编号,每条记录递增,这个就是mysql的自增id。
  • 2 时间类。以小时为brick,天为block,月为part, 年为shard。
  • 3 字符类。所有为数值、非时间类的主键采用字符编号。一般采用md5码计算32位字符,然后根据 每8个字符之和对10取余。如果数据很大,也可以考虑对100,甚至1000取余。

UCS规范已经嵌在GFGoLite服务中,通过UCS对象进行快速实现。

以下是本次实验的文件

  • 1 首先要声明worker的缓存空间名称,一般只需一次,后续其他的worker也可以使用这个空间。
  • 2 worker并不是服务状态的,所以每次启动必须要载入元数据,在结束本次执行后,要保存元数据
  • 3 worker的功能是从clickhouse中取数,然后存到stream中
  • 4 QM方面,通过声明远端服务器的RedisAgent完成
  • 5 从GlobalBuffer中获取clickhouse的连接参数
  • 6 使用CHClient来进行实际的控制
  • 7 执行前,待执行的brick_list应该被更新后放在缓存内。
  • 8 执行时,worker先取出待执行的brick_list和已经执行的brick(last_brick)
  • 9 如果last_brick是空,说明这是初始状态,cur_brick为brick_list中的第一个
  • 10 其他情况,cur_brick始终可以取到下一个,直到结尾(此时cur_brick始终等于last_brick),worker会跳过执行
  • 11 在正常执行时,worker通过ucs知道当前数据主键的范围,所以可以根据这个条件取出对应brick的原始数据
  • 12 执行结束时,worker将cur_brick更新到last_brick中。

最终,没执行一次脚本,就会搬运一个brick到远端队列。

'''
UCS顺序Worker的概念Worker采用UCS的顺序编号:id编号、时间编号Worker依赖Buffer提供运行时参数:- 1 brick列表
- 2 上一次处理brick
'''# 1 创建变量空间(Once) worker.general (TroubleShooting ts_001)
# 2 读取需要处理的brick_list(Manually)from Basefuncs import * worker_buffer_space = 'sp_worker.general'
tier1 = 'xxx'
tier2 = 'ucs_brick_ordered.sniffer'
prefix = '.'.join([worker_buffer_space,tier1,tier2]) +'.'target_redis_agent_host = 'http://IP:24118/'
target_redis_connection_hash = None 
target_stream_name = 'xxxx'
target_stream_max_len = 10000000qm = QManager(redis_agent_host = target_redis_agent_host, redis_connection_hash = target_redis_connection_hash, q_max_len = target_stream_max_len)
# ==========================  Load 
gb = GlobalBuffer()
# manually + brick_list
# gb.setx(prefix +'brick_list',brick_list,persist=True)
brick_list=  gb.getx(prefix +'brick_list')
last_brick_handled = gb.getx(prefix +'last_brick_handled')  or ''
last_runtime = gb.getx(prefix +'last_runtime')# brick_list需要保证顺序
if last_brick_handled is None:current_brick =  brick_list[0]
else:if brick_list.index(last_brick_handled) ==  len(brick_list) -1:current_brick = last_brick_handledelse:current_brick = brick_list[brick_list.index(last_brick_handled) +1]print('current_brick', current_brick)if current_brick != last_brick_handled:
# 根据buffer知道要处理的数据ucs = UCS()current_brick_bounds = ucs.get_brick_bounds(current_brick)# ==========================  Processingclick_para = gb.getx('sp_global.buffer.local.container.clickhouse.my_database.para')chc = CHClient(**click_para)# 根据bounds获取数据query_sql = 'select a, b, c, d from xxx where id >= %s and id < %s' % (current_brick_bounds[0], current_brick_bounds[1] )brick_data = chc._exe_sql(query_sql)brick_data_df = pd.DataFrame(brick_data, columns = ['a','b','c','d'])brick_data_df.columns = ['id','task_for','before','after']brick_data_df['function_type'] = 'ucs_worker'brick_data_df['rec_id'] = brick_data_df['id']brick_data_listofdict = brick_data_df.to_dict(orient='records')# ==========================  Postcur_q_len = qm.stream_len(target_stream_name)cur_write_resp = qm.parrallel_write_msg(target_stream_name, brick_data_listofdict, time_out=180)# ==========================  Updateif cur_write_resp['status']:last_brick_handled = current_brickgb.setx(prefix +'last_brick_handled', last_brick_handled, persist =True)print('current batch ', len(brick_data_listofdict),' 、target stream len',qm.stream_len(target_stream_name))
else:last_brick_handled = current_bricklast_runtime = get_time_str1()
gb.setx(prefix +'last_runtime', last_runtime)

flask_celery

后来我用了python的标准logging包 + RotateLog的方式记录,不过以下脚本仍然有用。

执行脚本

对于非标准的程序执行,通过脚本方式放在本地的home文件夹下,由celery调度。
注意,被celery执行的脚本,里面最好都写上绝对路径,因为在使用celery worker执行时,当前路径会默认为服务的启动路径 /opt/flask_celery。
例如LOG_FILE,只写tem.log,那么就会在flask_celery下发生修改。
始终注意的是,由flask celery执行的应该是简单的流转任务,而不是复杂的计算任务。如果有,就应该放在某个容器里执行。
再考虑到执行环境,flask celery是在base环境启动的,对应的包应该都能用。如果要执行特别的任务,就要在脚本里指定环境的切换。

vim /home/test_exe.sh

#!/bin/bash
# 日志文件路径
LOG_FILE="/home/tem.log"# 获取当前时间并追加到日志文件
echo "$(date '+%Y-%m-%d %H:%M:%S') - 脚本执行" >> $LOG_FILE# 检查日志文件中的记录条数
LINE_COUNT=$(wc -l < "$LOG_FILE")# 如果记录条数超过10000条,则截断日志文件以保留最新的100条记录
if [ "$LINE_COUNT" -gt 10000 ]; then# 计算需要保留的行数LINES_TO_KEEP=100# 截断日志文件tail -n $LINES_TO_KEEP $LOG_FILE > temp.log && mv temp.log $LOG_FILE
fi

然后将脚本改为可执行
chmod +x /home/test_exe.sh
执行测试


import requests as req param_dict = {'script_path': '/home/test_exe.sh'}resp = req.post('http://127.0.0.1:24104/exe_sh/',json = param_dict )In [5]: !cat tem.log
2024-06-17 14:55:54 - 脚本执行
2024-06-17 14:59:14 - 脚本执行
2024-06-17 15:21:13 - 脚本执行

这篇关于Python 全栈系列255 UCS实践:按ID同步数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085804

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert