动手学深度学习(Pytorch版)代码实践 -卷积神经网络-16自定义层

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -卷积神经网络-16自定义层,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

16自定义层

import torch
import torch.nn.functional as F
from torch import nnclass CenteredLayer(nn.Module):def __init__(self):super().__init__()#从其输入中减去均值#X.mean() 计算的是整个张量的均值#希望计算特定维度上的均值,可以传递 dim 参数。#例如,每一列均值,X.mean(dim=0)def forward(self, X):return X - X.mean()layer = CenteredLayer()
"""
torch.FloatTensor: 这是 PyTorch 中的一种张量类型,专门用于存储浮点数数据。
尽管 torch.FloatTensor 是创建浮点张量的一种方式,
但在 PyTorch 的最新版本中,建议使用 torch.tensor 函数,
因为它更加通用和灵活。
"""#均值为 3.0
print(layer(torch.FloatTensor([1, 2, 3, 4, 5])))
#tensor([-2., -1.,  0.,  1.,  2.])net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
"""
torch.rand和torch.randn有什么区别?
一个均匀分布 [0,1) ,一个是标准正态分布。
"""
Y = net(torch.rand(4, 8))
print(Y.mean())
#tensor(-6.5193e-09, grad_fn=<MeanBackward0>)#带参数的层
#实现自定义版本的全连接层
"""
该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。 
在此实现中,我们使用修正线性单元作为激活函数。
该层需要输入参数:in_units和units,分别表示输入数和输出数。
"""
class MyLinear(nn.Module):def __init__(self, in_units, units):super().__init__()#nn.Parameter 是一种特殊的张量,会被自动添加到模型的参数列表中。self.weight = nn.Parameter(torch.randn(in_units, units))self.bias = nn.Parameter(torch.randn(units,))def forward(self, X):linear = torch.matmul(X, self.weight.data) + self.bias.datareturn F.relu(linear)linear = MyLinear(5, 3)
print(linear.weight)
"""
tensor([[ 0.7130, -1.0828,  0.2203],[-2.0417, -0.1385,  0.6858],[-0.5163, -0.6009,  0.0783],[-0.3642,  0.5252, -0.6144],[-0.6479, -0.4700,  0.1486]], requires_grad=True)
"""
#使用自定义层直接执行前向传播计算。
print(linear(torch.rand(2, 5)))
"""
tensor([[0.0000, 0.0000, 0.2741],[0.0000, 0.0000, 0.5418]])
"""#使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
print(net(torch.rand(2, 64)))
"""
tensor([[9.0080],[7.6102]])
"""

这篇关于动手学深度学习(Pytorch版)代码实践 -卷积神经网络-16自定义层的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084887

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例