coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练

本文主要是介绍coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练

  • coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练
    • 大数据下的梯度下降
      • 1 大数据
      • 2 随机梯度下降
      • 3 mini-batch梯度下降
      • 4 随机梯度下降的收敛性
    • 大数据的高级技巧
      • 1在线学习
      • 2 mapreduce
    • 3quiz

1 大数据下的梯度下降

在接下来的几个视频里 ,我们会讲大规模的机器学习, 就是用来处理大数据的算法。 如果我们看近5到10年的机器学习的历史 ,现在的学习算法比5年前的好很多, 其中的原因之一就是我们现在拥有很多可以训练算法的数据 。

1.1 大数据

为什么我们喜欢用大的数据集呢?
我们已经知道 得到一个高效的机器学习系统的最好的方式之一是 用一个低偏差的学习算法 ,然后用很多数据来训练它.

当然 ,在我们训练一个上亿条数据的模型之前 ,我们还应该问自己: 为什么不用几千条数据呢 ?也许我们可以随机从上亿条的数据集里选个一千条的子集,然后用我们的算法计算。

通常的方法是画学习曲线 :

image

  • 如果你要绘制学习曲线,并且如果你的训练目标看起来像是左边的,而你的交叉验证集目标,theta的Jcv,那么这看起来像是一个高方差学习算法,所以加入额外的训练样例
    提高性能。

  • 右边看起来像传统的高偏见学习算法,那么看起来不大可能增加1亿到1亿将会更好,然后你会坚持n等于1000,而不是花费很多的精力弄清楚算法的规模如何。

  • 正确的做法之一是增加额外的特性,或者为神经网络增加额外的隐藏单位等等,这样你就可以得到更接近于左边的情况,在这种情况下可能达到n 等于1000,这样就给了你更多的信心,试图添加基础设施(下部构造)来改变算法,使用更多的例子,可能实际上是一个很好的利用你的时间。

1.2 随机梯度下降

对于很多机器学习算法, 包括线性回归、逻辑回归、神经网络等等, 算法的实现都是通过得出某个代价函数 或者某个最优化的目标来实现的, 然后使用梯度下降这样的方法来求得代价函数的最小值。

当我们的训练集较大时 ,梯度下降算法则显得计算量非常大 ,在这段视频中 我想介绍一种跟普通梯度下降不同的方法 随机梯度下降(stochastic gradient descent) 。

他的主要思想是:

{在每次迭代中不需要看所有的训练样例,但是在一次迭代中只需要看一个训练样例}

image

第一步是打乱数据 第二步是算法的关键 是关于某个单一的训练样本(x(i),y(i))来对参数进行更新

对于随即梯度下降来说,有以下说法:
1. 当训练集的个数m很大的时候,随即梯度下降比梯度下降要快很多。
2. 对与损失函数 Jtrain(θ)=1

这篇关于coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084634

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用

C#中预处理器指令的使用小结

《C#中预处理器指令的使用小结》本文主要介绍了C#中预处理器指令的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 第 1 名:#if/#else/#elif/#endif✅用途:条件编译(绝对最常用!) 典型场景: 示例

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Mysql中RelayLog中继日志的使用

《Mysql中RelayLog中继日志的使用》MySQLRelayLog中继日志是主从复制架构中的核心组件,负责将从主库获取的Binlog事件暂存并应用到从库,本文就来详细的介绍一下RelayLog中... 目录一、什么是 Relay Log(中继日志)二、Relay Log 的工作流程三、Relay Lo

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req