本文主要是介绍coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练
- coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练
- 大数据下的梯度下降
- 1 大数据
- 2 随机梯度下降
- 3 mini-batch梯度下降
- 4 随机梯度下降的收敛性
- 大数据的高级技巧
- 1在线学习
- 2 mapreduce
- 3quiz
- 大数据下的梯度下降
1 大数据下的梯度下降
在接下来的几个视频里 ,我们会讲大规模的机器学习, 就是用来处理大数据的算法。 如果我们看近5到10年的机器学习的历史 ,现在的学习算法比5年前的好很多, 其中的原因之一就是我们现在拥有很多可以训练算法的数据 。
1.1 大数据
为什么我们喜欢用大的数据集呢?
我们已经知道 得到一个高效的机器学习系统的最好的方式之一是 用一个低偏差的学习算法 ,然后用很多数据来训练它.
当然 ,在我们训练一个上亿条数据的模型之前 ,我们还应该问自己: 为什么不用几千条数据呢 ?也许我们可以随机从上亿条的数据集里选个一千条的子集,然后用我们的算法计算。
通常的方法是画学习曲线 :
如果你要绘制学习曲线,并且如果你的训练目标看起来像是左边的,而你的交叉验证集目标,theta的Jcv,那么这看起来像是一个高方差学习算法,所以加入额外的训练样例
提高性能。右边看起来像传统的高偏见学习算法,那么看起来不大可能增加1亿到1亿将会更好,然后你会坚持n等于1000,而不是花费很多的精力弄清楚算法的规模如何。
正确的做法之一是增加额外的特性,或者为神经网络增加额外的隐藏单位等等,这样你就可以得到更接近于左边的情况,在这种情况下可能达到n 等于1000,这样就给了你更多的信心,试图添加基础设施(下部构造)来改变算法,使用更多的例子,可能实际上是一个很好的利用你的时间。
1.2 随机梯度下降
对于很多机器学习算法, 包括线性回归、逻辑回归、神经网络等等, 算法的实现都是通过得出某个代价函数 或者某个最优化的目标来实现的, 然后使用梯度下降这样的方法来求得代价函数的最小值。
当我们的训练集较大时 ,梯度下降算法则显得计算量非常大 ,在这段视频中 我想介绍一种跟普通梯度下降不同的方法 随机梯度下降(stochastic gradient descent) 。
他的主要思想是:
{在每次迭代中不需要看所有的训练样例,但是在一次迭代中只需要看一个训练样例}
第一步是打乱数据 第二步是算法的关键 是关于某个单一的训练样本(x(i),y(i))来对参数进行更新
对于随即梯度下降来说,有以下说法:
1. 当训练集的个数m很大的时候,随即梯度下降比梯度下降要快很多。
2. 对与损失函数 Jtrain(θ)=1
这篇关于coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!