[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪

2024-06-22 10:04

本文主要是介绍[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Opencv_CUDA应用之 基于形状的对象检测与跟踪

  • 形状可以用作全局特征检测具有不同形状的物体,可以是直线、多边形、圆形或者任何其他不规则形状
  • 利用对象边界、边缘和轮廓可以检测具有特定形状的对象
  • 本文将使用Canny边缘检测算法和Hough变换来检测两个规则形状,即线和圆

1. Canny 边缘检测

  • Canny 结合了高斯滤波、梯度寻找、非极大值抑制和滞后阈值处理

  • 高通滤波器对噪声非常敏感,在Canny边缘检测中,检测边缘之前完成高斯平滑,在检测到边缘后从结果中移除不必要的边缘之后,还具有非极大值抑制阶段

  • 算法代码如下:

#include <cmath>
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>using namespace std;
using namespace cv;
using namespace cv::cuda;int main()
{Mat h_image = imread("images/drawing.JPG", 0);if (h_image.empty()){cout << "can not open image" << endl;return -1;}GpuMat d_edge, d_image;Mat h_edge;d_image.upload(h_image);cv::Ptr<cv::cuda::CannyEdgeDetector> canny_edge = cv::cuda::createCannyEdgeDetector(2.0, 100.0, 3, false);canny_edge->detect(d_image, d_edge);d_edge.download(h_edge);imshow("source", h_image);imshow("detected edges", h_edge);waitKey(0);return 0;
}

在这里插入图片描述

2. 使用 Hough 变换进行直线检测

  • hough变换常用于直线检测、圆检测
  • 直线检测函数解析:
/*
cv::cuda::createCannyEdgeDetector 函数参数:
第一个r表示在Hough变换中参数的分辨率,通常为1像素
第二个参数是theta在弧度中的分辨率,取1弧度或者pi/180
第三个参数是形成一条线所需点的最小数量
第四个参数是两点之间的最大间隙被视为同一条直线*/Ptr<cuda::HoughSegmentDetector> hough = cuda::createHoughSegmentDetector(1.0f, (float)(CV_PI / 180.0f), 50, 5);
  • 实现代码如下:
#include <cmath>
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>using namespace std;
using namespace cv;
using namespace cv::cuda;int main()
{Mat h_image = imread("images/drawing.JPG", 0);resize(h_image, h_image, h_image.size());if (h_image.empty()){cout << "can not open image" << endl;return -1;}Mat h_edge;cv::Canny(h_image, h_edge, 100, 200, 3);Mat h_imagec;cv::cvtColor(h_edge, h_imagec, COLOR_GRAY2BGR);Mat h_imageg = h_imagec.clone();vector<Vec4i> h_lines;{const int64 start = getTickCount();HoughLinesP(h_edge, h_lines, 1, CV_PI / 180, 50, 60, 5);const double time_elapsed = (getTickCount() - start) / getTickFrequency();cout << "CPU Time : " << time_elapsed * 1000 << " ms" << endl;cout << "CPU FPS : " << (1 / time_elapsed) << endl;}for (size_t i = 0; i < h_lines.size(); ++i){Vec4i line_point = h_lines[i];line(h_imagec, Point(line_point[0], line_point[1]), Point(line_point[2], line_point[3]), Scalar(0, 0, 255), 2, LINE_AA);}GpuMat d_edge, d_lines;d_edge.upload(h_edge);{const int64 start = getTickCount();Ptr<cuda::HoughSegmentDetector> hough = cuda::createHoughSegmentDetector(1.0f, (float)(CV_PI / 180.0f), 50, 5);hough->detect(d_edge, d_lines);const double time_elapsed = (getTickCount() - start) / getTickFrequency();cout << "GPU Time : " << time_elapsed * 1000 << " ms" << endl;cout << "GPU FPS : " << (1 / time_elapsed) << endl;}//取出直线两个点vector<Vec4i> lines_g;if (!d_lines.empty()){lines_g.resize(d_lines.cols);Mat h_lines(1, d_lines.cols, CV_32SC4, &lines_g[0]);d_lines.download(h_lines);}for (size_t i = 0; i < lines_g.size(); ++i){Vec4i line_point = lines_g[i];line(h_imageg, Point(line_point[0], line_point[1]), Point(line_point[2], line_point[3]), Scalar(0, 0, 255), 2, LINE_AA);}imshow("source", h_image);imshow("detected lines [CPU]", h_imagec);imshow("detected lines [GPU]", h_imageg);imwrite("hough_source.png", h_image);imwrite("hough_cpu_line.png", h_imagec);imwrite("hough_gpu_line.png", h_imageg);waitKey(0);return 0;
}

在这里插入图片描述

3. 对圆形进行检测

  • 球检测或者硬币检测
  • 圆检测函数解析:
/*
cv::cuda::createHoughCirclesDetector 参数
第一个参数是dp,表示累加器分辨率与图像分辨率的反比
第二个参数是检测到的圆中心之间的最小距离,调小会检测出其他错误圆,调大则可能丢失圆
第三个参数是Canny 阈值
第四个参数是累加器阈值
第五个和第六个参数是要检测的圆的最小和最大半径,不确定可以取0
*/
cv::Ptr<cv::cuda::HoughCirclesDetector> detector = 
cv::cuda::createHoughCirclesDetector(1, 100, 122, 50, 1, max(h_image.size().width, h_image.size().height));
  • 算法实现如下:
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>using namespace cv;
using namespace std;int main(int argc, char** argv)
{Mat h_image = imread("images/eight.tif", IMREAD_COLOR);Mat h_gray;cvtColor(h_image, h_gray, COLOR_BGR2GRAY);cuda::GpuMat d_gray, d_result;std::vector<cv::Vec3f> d_Circles;medianBlur(h_gray, h_gray, 5);cv::Ptr<cv::cuda::HoughCirclesDetector> detector = cv::cuda::createHoughCirclesDetector(1, 100, 122, 50, 1, max(h_image.size().width, h_image.size().height));d_gray.upload(h_gray);detector->detect(d_gray, d_result);d_Circles.resize(d_result.size().width);if (!d_Circles.empty())d_result.row(0).download(cv::Mat(d_Circles).reshape(3, 1));cout << "No of circles: " << d_Circles.size() << endl;for (size_t i = 0; i < d_Circles.size(); i++){Vec3i cir = d_Circles[i];circle(h_image, Point(cir[0], cir[1]), cir[2], Scalar(255, 0, 0), 2, LINE_AA);}imshow("detected circles", h_image);waitKey(0);return 0;
}

在这里插入图片描述

这篇关于[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083975

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S