[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪

2024-06-22 10:04

本文主要是介绍[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Opencv_CUDA应用之 基于形状的对象检测与跟踪

  • 形状可以用作全局特征检测具有不同形状的物体,可以是直线、多边形、圆形或者任何其他不规则形状
  • 利用对象边界、边缘和轮廓可以检测具有特定形状的对象
  • 本文将使用Canny边缘检测算法和Hough变换来检测两个规则形状,即线和圆

1. Canny 边缘检测

  • Canny 结合了高斯滤波、梯度寻找、非极大值抑制和滞后阈值处理

  • 高通滤波器对噪声非常敏感,在Canny边缘检测中,检测边缘之前完成高斯平滑,在检测到边缘后从结果中移除不必要的边缘之后,还具有非极大值抑制阶段

  • 算法代码如下:

#include <cmath>
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>using namespace std;
using namespace cv;
using namespace cv::cuda;int main()
{Mat h_image = imread("images/drawing.JPG", 0);if (h_image.empty()){cout << "can not open image" << endl;return -1;}GpuMat d_edge, d_image;Mat h_edge;d_image.upload(h_image);cv::Ptr<cv::cuda::CannyEdgeDetector> canny_edge = cv::cuda::createCannyEdgeDetector(2.0, 100.0, 3, false);canny_edge->detect(d_image, d_edge);d_edge.download(h_edge);imshow("source", h_image);imshow("detected edges", h_edge);waitKey(0);return 0;
}

在这里插入图片描述

2. 使用 Hough 变换进行直线检测

  • hough变换常用于直线检测、圆检测
  • 直线检测函数解析:
/*
cv::cuda::createCannyEdgeDetector 函数参数:
第一个r表示在Hough变换中参数的分辨率,通常为1像素
第二个参数是theta在弧度中的分辨率,取1弧度或者pi/180
第三个参数是形成一条线所需点的最小数量
第四个参数是两点之间的最大间隙被视为同一条直线*/Ptr<cuda::HoughSegmentDetector> hough = cuda::createHoughSegmentDetector(1.0f, (float)(CV_PI / 180.0f), 50, 5);
  • 实现代码如下:
#include <cmath>
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>using namespace std;
using namespace cv;
using namespace cv::cuda;int main()
{Mat h_image = imread("images/drawing.JPG", 0);resize(h_image, h_image, h_image.size());if (h_image.empty()){cout << "can not open image" << endl;return -1;}Mat h_edge;cv::Canny(h_image, h_edge, 100, 200, 3);Mat h_imagec;cv::cvtColor(h_edge, h_imagec, COLOR_GRAY2BGR);Mat h_imageg = h_imagec.clone();vector<Vec4i> h_lines;{const int64 start = getTickCount();HoughLinesP(h_edge, h_lines, 1, CV_PI / 180, 50, 60, 5);const double time_elapsed = (getTickCount() - start) / getTickFrequency();cout << "CPU Time : " << time_elapsed * 1000 << " ms" << endl;cout << "CPU FPS : " << (1 / time_elapsed) << endl;}for (size_t i = 0; i < h_lines.size(); ++i){Vec4i line_point = h_lines[i];line(h_imagec, Point(line_point[0], line_point[1]), Point(line_point[2], line_point[3]), Scalar(0, 0, 255), 2, LINE_AA);}GpuMat d_edge, d_lines;d_edge.upload(h_edge);{const int64 start = getTickCount();Ptr<cuda::HoughSegmentDetector> hough = cuda::createHoughSegmentDetector(1.0f, (float)(CV_PI / 180.0f), 50, 5);hough->detect(d_edge, d_lines);const double time_elapsed = (getTickCount() - start) / getTickFrequency();cout << "GPU Time : " << time_elapsed * 1000 << " ms" << endl;cout << "GPU FPS : " << (1 / time_elapsed) << endl;}//取出直线两个点vector<Vec4i> lines_g;if (!d_lines.empty()){lines_g.resize(d_lines.cols);Mat h_lines(1, d_lines.cols, CV_32SC4, &lines_g[0]);d_lines.download(h_lines);}for (size_t i = 0; i < lines_g.size(); ++i){Vec4i line_point = lines_g[i];line(h_imageg, Point(line_point[0], line_point[1]), Point(line_point[2], line_point[3]), Scalar(0, 0, 255), 2, LINE_AA);}imshow("source", h_image);imshow("detected lines [CPU]", h_imagec);imshow("detected lines [GPU]", h_imageg);imwrite("hough_source.png", h_image);imwrite("hough_cpu_line.png", h_imagec);imwrite("hough_gpu_line.png", h_imageg);waitKey(0);return 0;
}

在这里插入图片描述

3. 对圆形进行检测

  • 球检测或者硬币检测
  • 圆检测函数解析:
/*
cv::cuda::createHoughCirclesDetector 参数
第一个参数是dp,表示累加器分辨率与图像分辨率的反比
第二个参数是检测到的圆中心之间的最小距离,调小会检测出其他错误圆,调大则可能丢失圆
第三个参数是Canny 阈值
第四个参数是累加器阈值
第五个和第六个参数是要检测的圆的最小和最大半径,不确定可以取0
*/
cv::Ptr<cv::cuda::HoughCirclesDetector> detector = 
cv::cuda::createHoughCirclesDetector(1, 100, 122, 50, 1, max(h_image.size().width, h_image.size().height));
  • 算法实现如下:
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>using namespace cv;
using namespace std;int main(int argc, char** argv)
{Mat h_image = imread("images/eight.tif", IMREAD_COLOR);Mat h_gray;cvtColor(h_image, h_gray, COLOR_BGR2GRAY);cuda::GpuMat d_gray, d_result;std::vector<cv::Vec3f> d_Circles;medianBlur(h_gray, h_gray, 5);cv::Ptr<cv::cuda::HoughCirclesDetector> detector = cv::cuda::createHoughCirclesDetector(1, 100, 122, 50, 1, max(h_image.size().width, h_image.size().height));d_gray.upload(h_gray);detector->detect(d_gray, d_result);d_Circles.resize(d_result.size().width);if (!d_Circles.empty())d_result.row(0).download(cv::Mat(d_Circles).reshape(3, 1));cout << "No of circles: " << d_Circles.size() << endl;for (size_t i = 0; i < d_Circles.size(); i++){Vec3i cir = d_Circles[i];circle(h_image, Point(cir[0], cir[1]), cir[2], Scalar(255, 0, 0), 2, LINE_AA);}imshow("detected circles", h_image);waitKey(0);return 0;
}

在这里插入图片描述

这篇关于[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083975

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

vcpkg安装opencv中的特殊问题记录(无法找到opencv_corexd.dll)

我是按照网上的vcpkg安装opencv方法进行的(比如这篇:从0开始在visual studio上安装opencv(超详细,针对小白)),但是中间出现了一些别人没有遇到的问题,虽然原因没有找到,但是本人给出一些暂时的解决办法: 问题1: 我在安装库命令行使用的是 .\vcpkg.exe install opencv 我的电脑是x64,vcpkg在这条命令后默认下载的也是opencv2:x6

19.手写Spring AOP

1.Spring AOP顶层设计 2.Spring AOP执行流程 下面是代码实现 3.在 application.properties中增加如下自定义配置: #托管的类扫描包路径#scanPackage=com.gupaoedu.vip.demotemplateRoot=layouts#切面表达式expression#pointCut=public .* com.gupaoedu

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

自制的浏览器主页,可以是最简单的桌面应用,可以把它当成备忘录桌面应用

自制的浏览器主页,可以是最简单的桌面应用,可以把它当成备忘录桌面应用。如果你看不懂,请留言。 完整代码: <!DOCTYPE html><html lang="zh-CN"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><ti

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa

API-环境对象

学习目标: 掌握环境对象 学习内容: 环境对象作用 环境对象: 指的是函数内部特殊的变量this,它代表着当前函数运行时所处的环境。 作用: 弄清楚this的指向,可以让我们代码更简洁。 函数的调用方式不同,this指代的对象也不同。【谁调用,this就是谁】是判断this指向的粗略规则。直接调用函数,其实相当于是window.函数,所以this指代window。

基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别

转发来源:https://swift.ctolib.com/ooooverflow-chinese-ocr.html chinese-ocr 基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别 环境部署 sh setup.sh 使用环境: python 3.6 + tensorflow 1.10 +pytorch 0.4.1 注:CPU环境

brew install opencv@2 时报错 Error: Can't create update lock in /usr/local/var/homebrew/locks!

解决方案,报错里已经说明了: 我的解决方案: sudo chown -R "$USER":admin /usr/local   stackoverflow上的答案 I was able to solve the problem by using chown on the folder: sudo chown -R "$USER":admin /usr/local Also you'

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和