【ISAC】paper_NOMA Empowered Integrated Sensing and Communication

2024-06-22 01:12

本文主要是介绍【ISAC】paper_NOMA Empowered Integrated Sensing and Communication,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NOMA Empowered Integrated Sensing and Communication.

文章目录

  • Model
    • Communication Model
    • Sensing Model
    • Problem Formulation
  • Solution

Model

Dual-functional base station (BS) equipped with an N N N-antennas uniform linear array (ULA).

Communication Model

  • K = { 1 , … , K } \mathcal{K}=\{1,\ldots,K\} K={1,,K}: K K K single-antenna users indexed.
  • M = { 1 , … , M } \mathcal{M}=\{1,\ldots,M\} M={1,,M}: M M M radar targets indexed.
  • w i s i  for  ∀ i ∈ K \mathbf{w}_is_i\text{ for }\forall i\in\mathcal{K} wisi for iK: where w i ∈ C N × 1 \mathbf{w}_i\in\mathbb{C}^{N\times1} wiCN×1 are beamformers for delivering the information symbol s i s_i si to user i i i. BS transmits the superimposed signals to all users in downlink.
  • y k = h k H ∑ i ∈ K w i s i + n k = ∑ i ∈ K h k H w i s i + n k y_k=\mathrm{h}_k^H\sum_{i\in\mathcal{K}}\mathrm{w}_is_i+n_k=\sum_{i\in\mathcal{K}}\mathrm{h}_k^H\mathrm{w}_is_i+n_k yk=hkHiKwisi+nk=iKhkHwisi+nk: the received signal y k y_k yk at user k k k. where h k = Λ k − 1 / 2 h ~ k , ∀ k ∈ K \mathrm{h}_k=\Lambda_k^{-1/2}\widetilde{\mathsf{h}}_k,\forall k\in\mathcal{K} hk=Λk1/2h k,kK denotes the BS-user channel, Λ k − 1 / 2 \Lambda_k^{-1/2} Λk1/2 and h ~ k ∈ C N × 1 \widetilde{\mathbf{h}}_k\in\mathbb{C}^{N\times1} h kCN×1 denote the large and small scale fading, respectively, and n k n_k nk denotes the circularly symmetric complex Gaussian noise with variance σ n 2 . \sigma_n^2. σn2.
  • Λ 1 − 1 ≤ Λ 2 − 1 ≤ ⋯ ≤ \Lambda _1^{- 1}\leq \Lambda _2^{- 1}\leq \cdots \leq Λ11Λ21 Λ K − 1 . \Lambda _K^{- 1}. ΛK1. We assume that the users’ indexes are in an increasing order with respect to their large-scale channel strength.
  • R k → k = log ⁡ 2 ( 1 + ∣ h k H w k ∣ 2 ∑ i ∈ K , i > k ∣ h k H w i ∣ 2 + σ n 2 ) R_{k\to k}=\log_2\left(1+\frac{|\mathrm{h}_k^H\mathrm{w}_k|^2}{\sum_{i\in\mathcal{K},i>k}|\mathrm{h}_k^H\mathrm{w}_i|^2+\sigma_n^2}\right) R

这篇关于【ISAC】paper_NOMA Empowered Integrated Sensing and Communication的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082867

相关文章

POJ 1018 Communication System(枚举)

题目: http://poj.org/problem?id=1018 题解: 我们可以枚举每一种B可能的值,然后寻找每一行里大于等于B里最小的P。 代码: #include<cstdio>#include<stdlib.h>struct in{double B,P;}a[101][101];double b[10001];int t[101];int cmp(cons

Lenze伦茨EMF2102IBC−LECOM−A/B/LI L−force Communication手测

Lenze伦茨EMF2102IBC−LECOM−A/B/LI L−force Communication手测

【TJU】2944 Mussy Paper 最大权闭合子图

传送门:【TJU】2944 Mussy Paper 题目分析:最大权闭合子图模板题。。没啥好说的。。。 PS:置换群的轨道长度的证明迟迟没看懂。。TUT。。十分不开心就来写水题了 代码如下: #include <cstdio>#include <cstring>#include <algorithm>using namespace std ;#define R

Journal of Visual Communication and Image Representation (JVCI)投稿经验分享

网站:Journal of Visual Communication and Image Representation | ScienceDirect.com by Elsevier 影响因子:2.678 CiteScore:4.9 SCI:三区          今年3月份,开始向 Journal of Visual Communication and Image Representa

RAG Paper List - 检索增强生成论文汇总(2)

RAG Paper List - 检索增强生成论文汇总(2) 论文参考:Retrieval-Augmented Generation for AI-Generated Content: A Survey 摘要:模型算法的进步、基础模型的增长以及对高质量数据集的访问推动了人工智能生成内容 (AIGC) 的发展。尽管取得了显著的成功,但 AIGC 仍然面临诸如更新知识、处理长尾数据、减少数据泄漏

Lost connection to MySQL server at 'reading initial communication packet', system error: 0

连接MySQL提示: ERROR 2013 (HY000): Lost connection to MySQL server at ‘reading initial communication packet’, system error: 0 这是由于库文件初始化连接MySQL时连接失败引起的。 导致此错误的原因有: 1.服务器为正常启动的; 2.mysql设置文件中“bind-address”

遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理

遥感-超分-多光谱数据集内容格式链接论文备注MSRSD包括Pleiades、Worldview-2(WV-2)、Worldview-3(WV-3)、Quickbird-2、GeoEye-1和DEIMOS等几个卫星获取的大多数公开可用的甚高分辨率(VHR)卫星图像\[2102.09351] A Comprehensive Review of Deep Learning-based Single Im

Paper Note-MAD-GAN:基于生成对抗网络的时间序列多变量异常检测

原文标题:MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks 原文作者:Dan Li , Dacheng Chen , Lei Shi , Baihong Jin , Jonathan Goh , and See-Kiong Ng 原文来源:2019I

CV-Paper-增量学习-Large Scale Incremental Learning

目录 0 简介1 什么是偏差2 网络3 loss4 偏差矫正层 0 简介 就简单的说明一下好了,首先是使用蒸馏学习,然后再利用验证集来学习一个简单的线性变换 ax + b 来减少偏差。 这里是把验证集也拿过来训练了,虽然只是学习一个简单的线性变换,因为这个线性变换只有两个参数,所以需要的数据量非常少,虽然这个变换很简单,但是非常有效的提高精度。 文章中说的偏差指的是增量学习

图形编辑器基于Paper.js教程03:认识Paper.js中的所有类

先来认一下Paper的资源对象,小弟有哪些,有个整体的认识。认个脸。 在Paper.js的 官方文档中类大致有如下这些: 基类: ProjectViewItemPointToolSizeSegmentRectangleCurveCurveLocationMatrixColorStyleTweenToolEventGradientGradientStopEvent 二级或三级类 继承Ite