本文主要是介绍【TJU】2944 Mussy Paper 最大权闭合子图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
传送门:【TJU】2944 Mussy Paper
题目分析:最大权闭合子图模板题。。没啥好说的。。。
PS:置换群的轨道长度的证明迟迟没看懂。。TUT。。十分不开心就来写水题了
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;#define REP( i , a , b ) for ( int i = a ; i < b ; ++ i )
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
#define CPY( a , x ) memcpy ( a , x , sizeof a )const int MAXN = 105 ;
const int MAXQ = 105 ;
const int MAXE = 23333 ;
const int INF = 0x3f3f3f3f ;struct Edge {int v , c , n ;Edge () {}Edge ( int v , int c , int n ) : v ( v ) , c ( c ) , n ( n ) {}
} ;struct Net {Edge E[MAXE] ;int H[MAXN] , cntE ;int d[MAXN] , pre[MAXN] , cur[MAXN] , num[MAXN] ;int Q[MAXQ] , head , tail ;int s , t , nv ;int flow ;int n , m ;bool vis[MAXN] ;void init () {cntE = 0 ;CLR ( H , -1 ) ;}void addedge ( int u , int v , int c ) {E[cntE] = Edge ( v , c , H[u] ) ;H[u] = cntE ++ ;E[cntE] = Edge ( u , 0 , H[v] ) ;H[v] = cntE ++ ;}void rev_bfs () {CLR ( d , -1 ) ;CLR ( num , 0 ) ;head = tail = 0 ;Q[tail ++] = s ;num[0] = 1 ;d[t] = 0 ;while ( head != tail ) {int u = Q[head ++] ;for ( int i = H[u] ; ~i ; i = E[i].n ) {int v = E[i].v ;if ( d[v] == -1 ) {d[v] = d[u] + 1 ;Q[tail ++] = v ;num[d[v]] ++ ;}}}}int ISAP () {CPY ( cur , H ) ;rev_bfs () ;flow = 0 ;int u = pre[s] = s , i , mmin , pos ;while ( d[s] < nv ) {if ( u == t ) {int f = INF ;for ( i = s ; i != t ; i = E[cur[i]].v )if ( f > E[cur[i]].c ) {f = E[cur[i]].c ;pos = i ;}for ( i = s ; i != t ; i = E[cur[i]].v ) {E[cur[i]].c -= f ;E[cur[i] ^ 1].c += f ;}flow += f ;u = pos ;}for ( i = cur[u] ; ~i ; i = E[i].n )if ( E[i].c && d[u] == d[E[i].v] + 1 )break ;if ( ~i ) {cur[u] = i ;pre[E[i].v] = u ;u = E[i].v ;}else {if ( 0 == num[d[u]] )break ;for ( mmin = nv , i = H[u] ; ~i ; i = E[i].n )if ( E[i].c && mmin > d[E[i].v] ) {cur[u] = i ;mmin = d[E[i].v] ;}d[u] = mmin + 1 ;num[d[u]] ++ ;u = pre[u] ;}}return flow ;}void dfs ( int u ) {vis[u] = 1 ;for ( int i = H[u] ; ~i ; i = E[i].n )if ( E[i].c && !vis[E[i].v] )dfs ( E[i].v ) ;}void solve () {int x , p , v ;int val = 0 , cnt = 0 ;s = 0 , t = n + 1 , nv = t + 1 ;init () ;FOR ( u , 1 , n ) {scanf ( "%d%d" , &x , &p ) ;if ( x > 0 ) {val += x ;addedge ( s , u , x ) ;} else if ( x < 0 )addedge ( u , t , -x ) ;while ( p -- ) {scanf ( "%d" , &v ) ;addedge ( u , v , INF ) ;}}ISAP () ;if ( val - flow == 0 )printf ( "Refused\n" ) ;else {CLR ( vis , 0 ) ;dfs ( s ) ;FOR ( i , 1 , n )if ( vis[i] )++ cnt ;printf ( "%d %d\n" , val - flow , cnt ) ;FOR ( i , 1 , n )if ( vis[i] ) {-- cnt ;printf ( "%d%c" , i , cnt ? ' ' : '\n' ) ;}}}
} sap ;int main () {while ( ~scanf ( "%d" , &sap.n ) && sap.n )sap.solve () ;return 0 ;
}
这篇关于【TJU】2944 Mussy Paper 最大权闭合子图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!