交叉注意力一脚踹进医学图像分割!新成果精度、效率表现SOTA

本文主要是介绍交叉注意力一脚踹进医学图像分割!新成果精度、效率表现SOTA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为解决传统方法的局限性,研究者们提出了将交叉注意力机制应用于医学图像分割。

交叉注意力机制能更有效地整合来自不同模态/尺度的特征,让模型同时捕捉全局和局部信息,加速学习并减少干扰。这样不仅可以提高分割的精度,还可以减少训练时间,提高分割的效率。

因此这种策略成为了目前医学图像领域的重要研究方向,为我们实现更高的综合性能提供了新的解决思路。

本次分享8种最新的用交叉注意力做医学图像分割的创新方案,开源代码已附,论文创新点做了简单提炼,供大家参考学习寻找灵感。

论文原文以及开源代码需要的同学看文末

Dual Cross-Attention for Medical Image Segmentation

方法:论文介绍了一种用于医学图像分割的基于U-Net的架构中加强跳跃连接的Dual Cross-Attention (DCA)方法。DCA包括通道交叉注意力(CCA)和空间交叉注意力(SCA)模块,分别在通道和空间维度上捕捉远距离依赖关系。

创新点:

  • 提出了Dual Cross-Attention (DCA)机制,通过顺序捕捉通道和空间维度上的长程依赖关系,加强了U-Net-based架构中的跳跃连接。

  • 在融合策略上,通过比较三种融合策略(求和、串联和顺序融合),发现顺序融合策略的性能最好。顺序融合策略先进行CCA,再进行SCA,能够更好地提升性能。

  • 在补丁嵌入方面,通过比较简单的2D平均池化和卷积补丁嵌入,发现2D平均池化在性能上稍微优于卷积补丁嵌入。此外,卷积补丁嵌入需要额外的参数,而2D平均池化是无参数的,并且与1×1深度卷积投影结合时效果更好。

BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image Segmentation

方法:本文提出了一种新的医学图像分割结构BEFUnet,BEFUnet包含三个主要模块:局部交叉注意力特征融合模块、双层融合模块和双分支编码器,实现了边缘分割的鲁棒性和精确性。BEFUnet模型能够准确地分割边界模糊、不规则和受干扰的器官区域,并具有强大的泛化能力。

创新点:

  • 引入了像素差异卷积的概念,将传统边缘编码器和深度CNN的优势结合起来。这种整合使得边缘分割更加稳健和精确。

  • 提出了一种名为BEFUnet的新型医学图像分割结构,该结构提取了身体和边缘特征,并有效地将它们集成在一起以增强分割性能。

CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer With Modality-Correlated Cross-Attention for Brain Tumor Segmentation

方法:论文提出了一种新颖的基于临床知识驱动的脑肿瘤分割模型CKD-TransBTS。模型结构由双分支混合编码器和特征校准解码器组成。设计了一个具有所提出的模态相关交叉注意力块的双分支混合编码器来提取多模态图像特征。双分支混合编码器利用Transformer和CNN的优势,通过Modality-Correlated Cross-Attention模块进行跨模态特征提取。

创新点:

  • 提出了一种根据影像学原理对不同MRI序列进行重新分组的方法,将相关的图像模态组合在一起,使模型能够学习到更好的跨模态特征表示。

  • 提出了一种混合编码器的设计,将Transformer和CNN的优势相结合,通过引入卷积层在Transformer模型中实现归纳偏置和更好的局部特征表示。

  • 设计了一种特征校准解码器,通过Trans&CNN特征校准模块来弥合Transformer和CNN提取的特征之间的差距,从而获得更精确的分割结果。

CSAM: A 2.5D Cross-Slice Attention Module for Anisotropic Volumetric Medical Image Segmentation

方法:论文比较不同模型在医学图像分割中的性能,并提出了一种新的2.5D交叉切片注意机制(CSAM),该机制在前列腺分区分割中表现出优越性能,并且具有更少的参数。

创新点:

  • 引入了CSAM,该机制可以有效地学习和利用3D图像体积中的跨切片信息,从而改善体积分割的性能。

  • CSAM可以方便地插入到现有的2D CNN网络中,实现体积图像分割。通过对前列腺、胎盘和心脏MRI分割的广泛验证研究,证明了CSAM模型在性能上优于相应的2D、3D和之前最先进的2.5D方法。

 

关注下方《学姐带你玩AI》🚀🚀🚀

回复“注意力医学”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于交叉注意力一脚踹进医学图像分割!新成果精度、效率表现SOTA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082198

相关文章

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境