交叉注意力一脚踹进医学图像分割!新成果精度、效率表现SOTA

本文主要是介绍交叉注意力一脚踹进医学图像分割!新成果精度、效率表现SOTA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为解决传统方法的局限性,研究者们提出了将交叉注意力机制应用于医学图像分割。

交叉注意力机制能更有效地整合来自不同模态/尺度的特征,让模型同时捕捉全局和局部信息,加速学习并减少干扰。这样不仅可以提高分割的精度,还可以减少训练时间,提高分割的效率。

因此这种策略成为了目前医学图像领域的重要研究方向,为我们实现更高的综合性能提供了新的解决思路。

本次分享8种最新的用交叉注意力做医学图像分割的创新方案,开源代码已附,论文创新点做了简单提炼,供大家参考学习寻找灵感。

论文原文以及开源代码需要的同学看文末

Dual Cross-Attention for Medical Image Segmentation

方法:论文介绍了一种用于医学图像分割的基于U-Net的架构中加强跳跃连接的Dual Cross-Attention (DCA)方法。DCA包括通道交叉注意力(CCA)和空间交叉注意力(SCA)模块,分别在通道和空间维度上捕捉远距离依赖关系。

创新点:

  • 提出了Dual Cross-Attention (DCA)机制,通过顺序捕捉通道和空间维度上的长程依赖关系,加强了U-Net-based架构中的跳跃连接。

  • 在融合策略上,通过比较三种融合策略(求和、串联和顺序融合),发现顺序融合策略的性能最好。顺序融合策略先进行CCA,再进行SCA,能够更好地提升性能。

  • 在补丁嵌入方面,通过比较简单的2D平均池化和卷积补丁嵌入,发现2D平均池化在性能上稍微优于卷积补丁嵌入。此外,卷积补丁嵌入需要额外的参数,而2D平均池化是无参数的,并且与1×1深度卷积投影结合时效果更好。

BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image Segmentation

方法:本文提出了一种新的医学图像分割结构BEFUnet,BEFUnet包含三个主要模块:局部交叉注意力特征融合模块、双层融合模块和双分支编码器,实现了边缘分割的鲁棒性和精确性。BEFUnet模型能够准确地分割边界模糊、不规则和受干扰的器官区域,并具有强大的泛化能力。

创新点:

  • 引入了像素差异卷积的概念,将传统边缘编码器和深度CNN的优势结合起来。这种整合使得边缘分割更加稳健和精确。

  • 提出了一种名为BEFUnet的新型医学图像分割结构,该结构提取了身体和边缘特征,并有效地将它们集成在一起以增强分割性能。

CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer With Modality-Correlated Cross-Attention for Brain Tumor Segmentation

方法:论文提出了一种新颖的基于临床知识驱动的脑肿瘤分割模型CKD-TransBTS。模型结构由双分支混合编码器和特征校准解码器组成。设计了一个具有所提出的模态相关交叉注意力块的双分支混合编码器来提取多模态图像特征。双分支混合编码器利用Transformer和CNN的优势,通过Modality-Correlated Cross-Attention模块进行跨模态特征提取。

创新点:

  • 提出了一种根据影像学原理对不同MRI序列进行重新分组的方法,将相关的图像模态组合在一起,使模型能够学习到更好的跨模态特征表示。

  • 提出了一种混合编码器的设计,将Transformer和CNN的优势相结合,通过引入卷积层在Transformer模型中实现归纳偏置和更好的局部特征表示。

  • 设计了一种特征校准解码器,通过Trans&CNN特征校准模块来弥合Transformer和CNN提取的特征之间的差距,从而获得更精确的分割结果。

CSAM: A 2.5D Cross-Slice Attention Module for Anisotropic Volumetric Medical Image Segmentation

方法:论文比较不同模型在医学图像分割中的性能,并提出了一种新的2.5D交叉切片注意机制(CSAM),该机制在前列腺分区分割中表现出优越性能,并且具有更少的参数。

创新点:

  • 引入了CSAM,该机制可以有效地学习和利用3D图像体积中的跨切片信息,从而改善体积分割的性能。

  • CSAM可以方便地插入到现有的2D CNN网络中,实现体积图像分割。通过对前列腺、胎盘和心脏MRI分割的广泛验证研究,证明了CSAM模型在性能上优于相应的2D、3D和之前最先进的2.5D方法。

 

关注下方《学姐带你玩AI》🚀🚀🚀

回复“注意力医学”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于交叉注意力一脚踹进医学图像分割!新成果精度、效率表现SOTA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082198

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

【Tools】大模型中的注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

YOLOv8改进实战 | 注意力篇 | 引入CVPR2024 PKINet 上下文锚点注意力CAAttention

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以

stl的sort和手写快排的运行效率哪个比较高?

STL的sort必然要比你自己写的快排要快,因为你自己手写一个这么复杂的sort,那就太闲了。STL的sort是尽量让复杂度维持在O(N log N)的,因此就有了各种的Hybrid sort algorithm。 题主你提到的先quicksort到一定深度之后就转为heapsort,这种是introsort。 每种STL实现使用的算法各有不同,GNU Standard C++ Lib