实时数据处理革命:从传统数据栈到新一代流处理解决方案

本文主要是介绍实时数据处理革命:从传统数据栈到新一代流处理解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“数据像鱼一样,越放越臭,不像酒,越陈越香。”

图片

上述观点可能显得有些尖锐,但也有其道理所在。随着企业努力利用数据来实现新的商业模式,现有的数据栈明显无法继续满足需求,因为传统数据栈设计之初并未考虑到如今企业对于“超低延迟”的要求。

在深入探讨新应用不断涌现的需求之前,让我们回顾大约十年前的数据和分析领域的主要趋势,毫无疑问是“大数据”运动。思想领袖们用三个 V 来定义“大数据”:体量(Volume)、速度(Velocity)和多样性(Variety)。

简而言之,“大数据”指的是来自新来源的大量且复杂的数据集。这些数据集对于传统软件来说过于庞大,但可以用来解决以前无法解决的业务问题。

企业有巨大的潜力从海量数据中提取有意义的信息。然而,由于缺乏处理如此庞大数据集的工具,这一潜力尚未被充分发挥。大家引入 Hadoop 这类技术期望能够释放这一潜力,但这些大数据技术主要关注解决体量方面的问题,大多数用户没有看到其必要性或价值,所以没有被广泛使用。

为什么会这样呢?

原因有很多,但主要原因是数据的有限保质期。数据从业者面临实时访问数据的挑战,准确地说是在数据的内在价值还很高时实时访问数据的挑战。简单地将原始数据存储在数据湖中类似于数据倾倒,而不是利用数据。

另一个重要原因是即便数据可访问,其原始形式通常也不足以进行有效分析。要从数据中提取有价值的信息,复杂的提取-转换-加载(ETL)过程变得必要。数据依然被隔离在独立系统中,并与特定应用紧密相连。数据源的集成最近才通过消息队列和 CDC 连接器得以改善。

1. 数据特征的演变

传统数据从业者都会关注以下特征:
数据从业者关注的传统数据特征:Accuracy (准确性);Completeness (完整性);Reliability (可靠性)
数据库管理系统用 ACID (Atomicity, Consistency, Isolation, Durability)原则支持这些特征。

  • 原子性(Atomicity):通过全有或全无的语义确保完整性。
  • 一致性(Consistency):通过约束确保数据准确性。
  • 隔离性(Isolation):为数据完整性和准确性提供保证。
  • 持久性(Durability):基于不可变写入确保数据的可靠性。

ACID 原则在满足各种业务需求方面是有效的。当前的数据处理系统确保在任何数据栈中对这些特征的强大支持,所以企业能够处理依赖于静态数据快照的工作量。虽然业内已经通过各种优化来提升处理工作的速度和实时能力,但这些改进仍不能满足需要。

数据圈内,越来越多的人达成共识,认为应将数据视为连续无限的流,而不是快照。企业不再满足于了解过去发生了什么,他们更加关注预测未来结果,这需要对数据进行“实时”分析。在这种情况下,“实时”是由数据延迟定义的,而不是查询延迟。为了更好地理解,我们需要为数据的定义建立一套新的特征。

为了解决这些特征,新的数据处理范式是必要的。这个范式将:

  • 处理离散事件数据。
  • 连续处理实时数据。
  • 集成多个数据流进行状态处理。

2. 早期流处理解决方案

要支持上一节讨论的新的数据处理范式,新的数据处理栈是必要的。这个数据栈应具备以下特征:

  • 事件数据语义以保持事件数据的一致性。
  • 增量计算模型以对实时数据进行连续更新。
  • 熟悉的关系数据模型,将流视为表,以实现各种数据源的无缝集成。

第一代流处理系统:流处理系统已经在满足这些需求方面努力了一段时间。第一代流处理系统,如 Spark Streaming、Apache Heron 和早期版本的 Flink,在某些方面证明了其价值。例如,它们在微批处理方面表现出色,适合特定的使用场景。Spark Streaming 对于希望将流处理纳入现有工作负载的 Spark 用户来说,是一个有价值的补充。总体而言,这些系统继承了成熟的批处理模型的许多优点。

然而,它们也从传统批处理模型中继承了调度和协调问题。它们不支持真正的事件时间语义,这对于在事件驱动架构中构建应用至关重要。此外,这些技术仅关注数据处理方面。缺乏数据存储意味着需要一个单独的数据存储来实现持久化,从而导致应用性能下降和运营开销增加。此外,这些系统主要为早期采用者设计,他们习惯于使用低级 API 和接口。因此,这些技术在快速轻松构建实时应用方面没有显著进展。

3. 新一代流处理解决方案

为了使流处理更加广泛地被采用,必须将 SQL 作为标准 API。此外,新系统应包括内置存储层以有效处理数据检索。

流式数据库的出现:其旨在结合流处理引擎的增量处理能力与传统数据库的基于 SQL 的分析和持久化能力。新一代流式数据库的出现可以改善依赖于独立平台进行流处理和批处理所带来的操作低效问题。流式数据库,如 RisingWave 和 Materialize,旨在使用 SQL 查询和实时物化视图连续处理事件数据流。它们还会持久化历史事件数据以供进一步分析。

与将数据存储在外部数据库中的流计算引擎不同,流式数据库设计之初就考虑到了提供内置处理和持久化能力。这意味着单一的流式数据库就可以作为 Apache Flink + Apache Cassandra 等工具组合的可行替代方案。这样做简化了部署、配置、集成和管理。通过流式数据库,数据库功能向上游转移,实现数据到达时的实时处理,并促进数据的即时服务。

4. 展望未来

通过结合早期流处理引擎和传统数据库系统的优势,我们正在降低流处理的门槛,让更广泛的用户群体受益。这种融合的影响是深远的,企业可以利用实时数据分析做出明智的决策,预测结果,并获得竞争优势。连续的实时数据处理和多数据流的集成支持各种应用场景,包括欺诈检测、实时个性化、供应链优化和物联网分析。此外,流处理的大众化使数据工程师、数据科学家和数据分析师能够在无需大量专业技术知识储备的情况下开发实时应用。

5. 关于 RisingWave

RisingWave 是一款开源的分布式流处理数据库,旨在帮助用户降低实时应用的开发成本。RisingWave 采用存算分离架构,提供 Postgres-style 使用体验,具备比 Flink 高出 10 倍的性能以及更低的成本。

👨‍🔬加入 RW 社区,欢迎关注公众号:RisingWave 中文开源社区

🧑‍💻快速上手 RisingWave,欢迎体验入门教程:github.com/risingwave

💻深入使用 RisingWave,欢迎阅读用户文档:zh-cn.risingwave.com/docs

🔍更多常见问题及答案,欢迎搜索留言: risingwavelabs/discussions

这篇关于实时数据处理革命:从传统数据栈到新一代流处理解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081485

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

读书摘录《控糖革命》

又到了每周推荐时间,这周末给大家推荐一本书《控糖革命》。身体是革命的本钱,只有保持健康的身体,才能保证持久的生产力,希望我的读者都可以身体健康,青春永驻。 推荐前,首先申明在《控糖革命》一书中,作者提出了一些颇具争议的观点,这些观点并没有经过系统的科学论证,但这并不妨碍我们从中获取一些有益的控糖建议。作者通过分享作者的个人经验和研究,为我们提供了一种全新的饮食理念,帮助我们更好地控制血糖峰值

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount