深度神经网络——决策树的实现与剪枝

2024-06-21 13:44

本文主要是介绍深度神经网络——决策树的实现与剪枝,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

决策树 是一种有用的机器学习算法,用于回归和分类任务。 “决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。

这是决策树的快速定义,但让我们深入了解决策树的工作原理。 更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。

决策树的结构

决策树的结构类似于流程图,从一个起点或根节点开始,根据过滤条件的判断结果,逐级分支,直至达到树的末端,即叶子节点。每个内部节点代表一个特征的测试条件,而叶子节点则代表数据点的分类标签。
在这里插入图片描述
决策树是一种层次化的决策模型,它通过一系列的问题将数据分类。以下是决策树结构的关键组成部分和特性:

  1. 根节点(Root Node)

    • 决策树的起点,代表整个数据集。
  2. 内部节点(Internal Nodes)

    • 表示决策问题或属性测试。每个内部节点对应一个特征(或属性)的分割点。
  3. 分支(Branches)

    • 从每个内部节点延伸出来,代表测试的不同结果。分支的数量取决于该节点特征的可能值。
  4. 叶子节点(Leaf Nodes)

    • 树的末端,代表最终决策或分类结果。在分类问题中,叶子节点通常包含类别标签;在回归问题中,它们包含预测值。
  5. 路径(Path)

    • 从根节点到任一叶子节点的连接序列,代表一系列决策规则。
  6. 分割(Split)

    • 在内部节点处,根据特征值将数据集分割成子集的过程。
  7. 特征(Feature)

    • 用于分割数据的特征或属性。
  8. 阈值(Threshold)

    • 用于确定数据点是否沿着特定分支的值。
  9. 纯度(Purity)

    • 衡量节点中数据点是否属于同一类别的指标。高纯度意味着节点中的数据点属于同一类别。
  10. 深度(Depth)

    • 从根节点到树中任意节点的最长路径长度。
  11. 宽度(Width)

    • 树中叶子节点的最大数量。
  12. 树高(Tree Height)

    • 从根节点到最远叶子节点的边数。
  13. 基尼指数(Gini Index)

    • 用于分类树的内部节点评估,衡量节点不纯度的指标。
  14. 熵(Entropy)

    • 另一种衡量节点不纯度的指标,常用于构建分类树。
  15. 信息增益(Information Gain)

    • 通过分割获得的信息量,用于选择最佳分割点。
  16. 决策规则(Decision Rules)

    • 从根到叶的路径上的一系列决策,用于对数据点进行分类。

决策树的结构使得模型不仅能够进行预测,还能够解释预测背后的逻辑。这种可解释性使得决策树在需要模型透明度的应用中非常有用。然而,决策树也容易过拟合,特别是当树变得非常深和复杂时。因此,剪枝技术通常用于简化决策树,提高其泛化能力。

决策树算法

决策树的构建过程采用递归二元分割算法,该算法通过评估不同特征对数据集进行分割的效果,选择最佳分割点。分割的目的是使得每个子集尽可能地“纯”,即包含的数据点属于同一类别或具有相似的响应值。

分割成本的确定

决策树是一种常用用于分类和回归任务。在回归问题中,决策树的目标是预测一个连续的输出值。如果你使用决策树进行回归预测,并希望计算预测误差,你可以使用均方误差(Mean Squared Error, MSE)作为评估指标。MSE 衡量的是模型预测值与实际值之间差异的平方的平均值。

对于决策树来说,计算 MSE 的过程如下:

  1. 使用决策树模型进行预测:给定一个训练好的决策树模型,对于每个数据点,使用模型进行预测,得到预测值 prediction_i

  2. 计算误差:对于每个数据点,计算其实际值 y_i 与预测值 prediction_i 之间的差异,然后计算这个差异的平方。

  3. 求和:将所有数据点的误差平方求和。

  4. 平均:将求和结果除以数据点的总数 n,得到 MSE。

数学公式表示为:

M S E = 1 n ∑ i = 1 n ( y i − prediction i ) 2 {MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \text{prediction}_i)^2 MSE=n1i=1n(yipredictioni)2

其中:

  • n n n 是数据集中的样本数量。
  • y i y_i yi是第i` 个样本的实际值。
  • p r e d i c t i o n i {prediction}_i predictioni 是模型对第 i 个样本的预测值。

在 Python 中,如果使用 scikit-learn 库,可以很容易地计算决策树模型的 MSE。以下是一个简单的例子:

from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
import numpy as np# 假设 X 是特征数据,y 是目标变量
X = ...  # 特征数据
y = ...  # 目标变量# 创建决策树回归模型
tree_reg = DecisionTreeRegressor()# 训练模型
tree_reg.fit(X, y)# 进行预测
y_pred = tree_reg.predict(X)# 计算 MSE
mse = mean_squared_error(y, y_pred)
print(f"Mean Squared Error: {mse}")

MSE 仅适用于回归问题。如果你在处理分类问题,可能需要考虑其他指标,如准确率、召回率、F1 分数等。此外,MSE 对异常值敏感,因此在某些情况下,你可能还想使用其他指标,如平均绝对误差(Mean Absolute Error, MAE)来评估模型性能。

决策树的剪枝

决策树的剪枝是防止模型过拟合的重要技术。过拟合的决策树可能会在训练数据上表现良好,但在未见过的数据上泛化能力差。剪枝通过移除树中的一些分支来简化模型,从而提高其在新数据上的预测性能。以下是几种常见的决策树剪枝方法:

  1. 预剪枝(Pre-pruning)

    • 在构建决策树的过程中,预剪枝会在树生长的每个阶段评估是否应该停止分裂。如果某个节点的分裂不能显著提高模型的性能,那么这个节点将被标记为叶子节点,不再进一步分裂。
  2. 后剪枝(Post-pruning)

    • 后剪枝是在决策树完全生长完成后进行的。它从树的叶子节点开始,评估移除节点对模型性能的影响。如果移除某个节点后的模型性能没有显著下降,那么这个节点将被删除。
  3. 错误率降低剪枝(Reduced-Error Pruning)

    • 这种方法是在后剪枝的基础上,通过比较剪枝前后的错误率来决定是否剪枝。如果剪枝后的模型在交叉验证集上的错误率没有增加,或者增加的幅度在可接受范围内,那么剪枝是成功的。
  4. 代价复杂性剪枝(Cost-Complexity Pruning)

    • 代价复杂性剪枝是一种后剪枝技术,它通过引入一个参数来平衡模型的复杂度和预测误差。这种方法允许模型在剪枝过程中保持一定程度的复杂性,同时减少过拟合的风险。
  5. 最小描述长度剪枝(Minimum Description Length Pruning)

    • 这种方法基于信息论原理,试图找到能够最小化描述模型和数据所需的信息量(即描述长度)的树。它考虑了模型的复杂性和预测误差,以找到最佳的剪枝点。
  6. 基于规则的剪枝

    • 在某些情况下,可以使用领域知识来定义规则,以指导剪枝过程。例如,如果某个特征在数据集中的分布非常不均匀,可以考虑剪枝掉依赖于该特征的分支。

使用决策树的注意事项

决策树在需要快速分类且计算时间受限的场景下非常有用。它们能够清晰地展示数据集中哪些特征最具预测力,并且与许多其他机器学习算法相比,决策树的规则更易于解释。此外,决策树能够处理分类变量和连续变量,减少了预处理的需求。

然而,决策树在预测连续属性值时可能表现不佳,且在类别众多而训练样本较少的情况下,分类准确性可能降低。

通过深入理解决策树的工作原理和特性,我们可以更好地判断在机器学习项目中何时使用它们,以及如何优化它们的性能。

这篇关于深度神经网络——决策树的实现与剪枝的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081381

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

利用Frp实现内网穿透(docker实现)

文章目录 1、WSL子系统配置2、腾讯云服务器安装frps2.1、创建配置文件2.2 、创建frps容器 3、WSL2子系统Centos服务器安装frpc服务3.1、安装docker3.2、创建配置文件3.3 、创建frpc容器 4、WSL2子系统Centos服务器安装nginx服务 环境配置:一台公网服务器(腾讯云)、一台笔记本电脑、WSL子系统涉及知识:docker、Frp