Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路

本文主要是介绍Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯计算地球大气层中热层金属坠物运动轨迹 | 🎯计算炮弹最佳弹射角度耦合微分方程 | 🎯计算电磁拉莫尔半径螺旋运动 | 🎯计算航天器重力弹弓运动力学微分方程 | 🎯计算双摆的混沌运动非线性微分方程,绘制相空图 | 🎯计算绝热和无粘流流体力学微分方程 | 🎯计算容器流体晃动自由表面简谐运动数学模型 | 🎯计算化学物质的伦纳德-琼斯势物理模型 | 🎯分析直流交流电阻电容电路

📜欧拉法 | 本文 - 用例

📜MATLAB雨刮通风空调模糊器和发电厂电力聚变器卷积神经

📜Python物理量和化学量数值计算

📜Python流感常微分方程房室数学模型

📜C++计算资本市场收益及成本分配数学方程

📜Python计算物理粒子及拉格朗日和哈密顿动力学

📜C代码快速傅里叶变换-分类和推理-常微分和偏微分方程

📜Python物理学有限差分微分求解器和动画波形传播

📜Julia评估劳动力市场经济数学模型价值策略选择

📜Python嵌入式动态用户调制解调响应式射频信号

📜Python机器人动力学和细胞酶常微分方程

📜Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

📜Python | C++ | MATLAB机器人正逆向运动学动力学求解器及算法

📜Python微磁学磁倾斜和西塔规则算法

📜Python烟雾液体弹性力微分模拟 | 出租车往返速度微分计算
在这里插入图片描述
在这里插入图片描述

🍇Python欧拉法

d S ( t ) d t = F ( t , S ( t ) ) \frac{d S(t)}{d t}=F(t, S(t)) dtdS(t)=F(t,S(t)) 为显式定义的一阶常微分方程。也就是说, F F F 是一个函数,它返回给定时间和状态值的状态的导数或变化。另外,令 t t t 为区间 [ t 0 , t f ] \left[t_0, t_f\right] [t0,tf] 的数字网格,间距为 h h h。不失一般性,我们假设 t 0 = 0 t_0=0 t0=0,并且对于某个正整数 N N N t f = N h t_f=N h tf=Nh

S ( t ) S(t) S(t) t j t_j tj 附近的线性近似为
S ( t j + 1 ) = S ( t j ) + ( t j + 1 − t j ) d S ( t j ) d t S\left(t_{j+1}\right)=S\left(t_j\right)+\left(t_{j+1}-t_j\right) \frac{d S\left(t_j\right)}{d t} S(tj+1)=S(tj)+(tj+1tj)dtdS(tj)
还可以写为:
S ( t j + 1 ) = S ( t j ) + h F ( t j , S ( t j ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_j, S\left(t_j\right)\right) S(tj+1)=S(tj)+hF(tj,S(tj))
这个公式称为显式欧拉公式,它允许我们在给定 S ( t j ) S\left(t_j\right) S(tj) 状态的情况下计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 状态的近似值。从给定的初始值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)开始,我们可以使用这个公式对状态进行积分直到 S ( t f ) S\left(t_f\right) S(tf);这些 S ( t ) S(t) S(t) 值是微分方程解的近似值。显式欧拉公式是解决初值问题最简单、最直观的方法。在任何状态 ( t j , S ( t j ) ) \left(t_j, S\left(t_j\right)\right) (tj,S(tj)),它在该状态下使用 F F F“指向”下一个状态,然后朝该方向移动 h h h的距离。尽管有更复杂和更准确的方法来解决这些问题,但它们都具有相同的基本结构。因此,我们明确列举了使用显式欧拉公式解决初始值问题的步骤。

假设我们有一个函数 F ( t , S ( t ) ) F(t, S(t)) F(t,S(t)) 计算 d S ( t ) d t \frac{d S(t)}{d t} dtdS(t),一个数值网格 t t t,区间 [ t 0 , t f ] \left[ t_0, t_f\right] [t0,tf],初始状态值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)。我们可以使用以下步骤计算 t t t 中每个 t j t_j tj S ( t j ) S\left(t_j\right) S(tj)

  • S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0) 存储在数组 S S S 中。
  • 计算 S ( t 1 ) = S 0 + h F ( t 0 , S 0 ) S\left(t_1\right)=S_0+h F\left(t_0, S_0\right) S(t1)=S0+hF(t0,S0)
  • S 1 = S ( t 1 ) S_1=S\left(t_1\right) S1=S(t1) 存储在 S S S
  • 计算 S ( t 2 ) = S 1 + h F ( t 1 , S 1 ) S\left(t_2\right)=S_1+h F\left(t_1, S_1\right) S(t2)=S1+hF(t1,S1)
  • S 2 = S ( t 1 ) S_2=S\left(t_1\right) S2=S(t1) 存储在 S S S​ 中。
  • 计算 S ( t f ) = S f − 1 + h F ( t f − 1 , S f − 1 ) S\left(t_f\right)=S_{f-1}+h F\left(t_{f-1}, S_{f-1}\right) S(tf)=Sf1+hF(tf1,Sf1)
  • S f = S ( t f ) S_f=S\left(t_f\right) Sf=S(tf) 存储在 S S S
  • S S S 是初始值问题的近似解

当使用具有这种结构的方法时,我们称该方法集成了常微分方程的解。

初始条件为 f 0 = − 1 f_0=-1 f0=1的微分方程 d f ( t ) d t = e − t \frac{d f(t)}{d t}=e^{-t} dtdf(t)=et有精确解 f ( t ) = − e − t f(t)=-e^{-t} f(t)=et 。使用显式欧拉公式,以 0.1 为增量,在 0 和 1 之间近似求解此初始值问题。绘制近似解和精确解之间的差异。

代码处理:

import numpy as np
import matplotlib.pyplot as pltplt.style.use('seaborn-poster')
%matplotlib inlinef = lambda t, s: np.exp(-t) 
h = 0.1 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

在上图中,我们可以看到每个点都是基于前一个点以线性方式进行的近似。从初始值,我们最终可以得到数值网格上解的近似值。如果我们对 h = 0.01 h=0.01 h=0.01 重复该过程,我们会得到更好的近似解:

h = 0.01 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'b--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

显式欧拉公式之所以被称为“显式”,是因为它只需要 t j t_j tj 处的信息来计算 t j + 1 t_{j+1} tj+1 处的状态。也就是说, S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 可以根据我们拥有的值(即 t j t_j tj S ( t j ) S\left(t_j\right) S(tj) )显式地编写。隐式欧拉公式可以通过在 t j + 1 t_{j+1} tj+1 周围取 S ( t ) S(t) S(t) 的线性近似并在 t j t_j tj 处计算来导出:
S ( t j + 1 ) = S ( t j ) + h F ( t j + 1 , S ( t j + 1 ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_{j+1}, S\left(t_{j+1}\right)\right) S(tj+1)=S(tj)+hF(tj+1,S(tj+1))
这个公式很奇特,因为它要求我们知道 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 才能计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1)!不过,有时候我们可以用这个公式来近似求解初值问题。在详细介绍如何使用隐式欧拉公式解决这些问题之前,我们先给出另一个隐式公式,称为梯形公式,它是显式和隐式欧拉公式的平均值:
S ( t j + 1 ) = S ( t j ) + h 2 ( F ( t j , S ( t j ) ) + F ( t j + 1 , S ( t j + 1 ) ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+\frac{h}{2}\left(F\left(t_j, S\left(t_j\right)\right)+F\left(t_{j+1}, S\left(t_{j+1}\right)\right)\right) S(tj+1)=S(tj)+2h(F(tj,S(tj))+F(tj+1,S(tj+1)))
为了说明如何求解这些隐式解,请再次考虑已简化为一阶的摆方程。

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081007

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很