Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路

本文主要是介绍Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯计算地球大气层中热层金属坠物运动轨迹 | 🎯计算炮弹最佳弹射角度耦合微分方程 | 🎯计算电磁拉莫尔半径螺旋运动 | 🎯计算航天器重力弹弓运动力学微分方程 | 🎯计算双摆的混沌运动非线性微分方程,绘制相空图 | 🎯计算绝热和无粘流流体力学微分方程 | 🎯计算容器流体晃动自由表面简谐运动数学模型 | 🎯计算化学物质的伦纳德-琼斯势物理模型 | 🎯分析直流交流电阻电容电路

📜欧拉法 | 本文 - 用例

📜MATLAB雨刮通风空调模糊器和发电厂电力聚变器卷积神经

📜Python物理量和化学量数值计算

📜Python流感常微分方程房室数学模型

📜C++计算资本市场收益及成本分配数学方程

📜Python计算物理粒子及拉格朗日和哈密顿动力学

📜C代码快速傅里叶变换-分类和推理-常微分和偏微分方程

📜Python物理学有限差分微分求解器和动画波形传播

📜Julia评估劳动力市场经济数学模型价值策略选择

📜Python嵌入式动态用户调制解调响应式射频信号

📜Python机器人动力学和细胞酶常微分方程

📜Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

📜Python | C++ | MATLAB机器人正逆向运动学动力学求解器及算法

📜Python微磁学磁倾斜和西塔规则算法

📜Python烟雾液体弹性力微分模拟 | 出租车往返速度微分计算
在这里插入图片描述
在这里插入图片描述

🍇Python欧拉法

d S ( t ) d t = F ( t , S ( t ) ) \frac{d S(t)}{d t}=F(t, S(t)) dtdS(t)=F(t,S(t)) 为显式定义的一阶常微分方程。也就是说, F F F 是一个函数,它返回给定时间和状态值的状态的导数或变化。另外,令 t t t 为区间 [ t 0 , t f ] \left[t_0, t_f\right] [t0,tf] 的数字网格,间距为 h h h。不失一般性,我们假设 t 0 = 0 t_0=0 t0=0,并且对于某个正整数 N N N t f = N h t_f=N h tf=Nh

S ( t ) S(t) S(t) t j t_j tj 附近的线性近似为
S ( t j + 1 ) = S ( t j ) + ( t j + 1 − t j ) d S ( t j ) d t S\left(t_{j+1}\right)=S\left(t_j\right)+\left(t_{j+1}-t_j\right) \frac{d S\left(t_j\right)}{d t} S(tj+1)=S(tj)+(tj+1tj)dtdS(tj)
还可以写为:
S ( t j + 1 ) = S ( t j ) + h F ( t j , S ( t j ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_j, S\left(t_j\right)\right) S(tj+1)=S(tj)+hF(tj,S(tj))
这个公式称为显式欧拉公式,它允许我们在给定 S ( t j ) S\left(t_j\right) S(tj) 状态的情况下计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 状态的近似值。从给定的初始值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)开始,我们可以使用这个公式对状态进行积分直到 S ( t f ) S\left(t_f\right) S(tf);这些 S ( t ) S(t) S(t) 值是微分方程解的近似值。显式欧拉公式是解决初值问题最简单、最直观的方法。在任何状态 ( t j , S ( t j ) ) \left(t_j, S\left(t_j\right)\right) (tj,S(tj)),它在该状态下使用 F F F“指向”下一个状态,然后朝该方向移动 h h h的距离。尽管有更复杂和更准确的方法来解决这些问题,但它们都具有相同的基本结构。因此,我们明确列举了使用显式欧拉公式解决初始值问题的步骤。

假设我们有一个函数 F ( t , S ( t ) ) F(t, S(t)) F(t,S(t)) 计算 d S ( t ) d t \frac{d S(t)}{d t} dtdS(t),一个数值网格 t t t,区间 [ t 0 , t f ] \left[ t_0, t_f\right] [t0,tf],初始状态值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)。我们可以使用以下步骤计算 t t t 中每个 t j t_j tj S ( t j ) S\left(t_j\right) S(tj)

  • S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0) 存储在数组 S S S 中。
  • 计算 S ( t 1 ) = S 0 + h F ( t 0 , S 0 ) S\left(t_1\right)=S_0+h F\left(t_0, S_0\right) S(t1)=S0+hF(t0,S0)
  • S 1 = S ( t 1 ) S_1=S\left(t_1\right) S1=S(t1) 存储在 S S S
  • 计算 S ( t 2 ) = S 1 + h F ( t 1 , S 1 ) S\left(t_2\right)=S_1+h F\left(t_1, S_1\right) S(t2)=S1+hF(t1,S1)
  • S 2 = S ( t 1 ) S_2=S\left(t_1\right) S2=S(t1) 存储在 S S S​ 中。
  • 计算 S ( t f ) = S f − 1 + h F ( t f − 1 , S f − 1 ) S\left(t_f\right)=S_{f-1}+h F\left(t_{f-1}, S_{f-1}\right) S(tf)=Sf1+hF(tf1,Sf1)
  • S f = S ( t f ) S_f=S\left(t_f\right) Sf=S(tf) 存储在 S S S
  • S S S 是初始值问题的近似解

当使用具有这种结构的方法时,我们称该方法集成了常微分方程的解。

初始条件为 f 0 = − 1 f_0=-1 f0=1的微分方程 d f ( t ) d t = e − t \frac{d f(t)}{d t}=e^{-t} dtdf(t)=et有精确解 f ( t ) = − e − t f(t)=-e^{-t} f(t)=et 。使用显式欧拉公式,以 0.1 为增量,在 0 和 1 之间近似求解此初始值问题。绘制近似解和精确解之间的差异。

代码处理:

import numpy as np
import matplotlib.pyplot as pltplt.style.use('seaborn-poster')
%matplotlib inlinef = lambda t, s: np.exp(-t) 
h = 0.1 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

在上图中,我们可以看到每个点都是基于前一个点以线性方式进行的近似。从初始值,我们最终可以得到数值网格上解的近似值。如果我们对 h = 0.01 h=0.01 h=0.01 重复该过程,我们会得到更好的近似解:

h = 0.01 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'b--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

显式欧拉公式之所以被称为“显式”,是因为它只需要 t j t_j tj 处的信息来计算 t j + 1 t_{j+1} tj+1 处的状态。也就是说, S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 可以根据我们拥有的值(即 t j t_j tj S ( t j ) S\left(t_j\right) S(tj) )显式地编写。隐式欧拉公式可以通过在 t j + 1 t_{j+1} tj+1 周围取 S ( t ) S(t) S(t) 的线性近似并在 t j t_j tj 处计算来导出:
S ( t j + 1 ) = S ( t j ) + h F ( t j + 1 , S ( t j + 1 ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_{j+1}, S\left(t_{j+1}\right)\right) S(tj+1)=S(tj)+hF(tj+1,S(tj+1))
这个公式很奇特,因为它要求我们知道 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 才能计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1)!不过,有时候我们可以用这个公式来近似求解初值问题。在详细介绍如何使用隐式欧拉公式解决这些问题之前,我们先给出另一个隐式公式,称为梯形公式,它是显式和隐式欧拉公式的平均值:
S ( t j + 1 ) = S ( t j ) + h 2 ( F ( t j , S ( t j ) ) + F ( t j + 1 , S ( t j + 1 ) ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+\frac{h}{2}\left(F\left(t_j, S\left(t_j\right)\right)+F\left(t_{j+1}, S\left(t_{j+1}\right)\right)\right) S(tj+1)=S(tj)+2h(F(tj,S(tj))+F(tj+1,S(tj+1)))
为了说明如何求解这些隐式解,请再次考虑已简化为一阶的摆方程。

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081007

相关文章

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

Python 字符串占位

在Python中,可以使用字符串的格式化方法来实现字符串的占位。常见的方法有百分号操作符 % 以及 str.format() 方法 百分号操作符 % name = "张三"age = 20message = "我叫%s,今年%d岁。" % (name, age)print(message) # 我叫张三,今年20岁。 str.format() 方法 name = "张三"age

一道经典Python程序样例带你飞速掌握Python的字典和列表

Python中的列表(list)和字典(dict)是两种常用的数据结构,它们在数据组织和存储方面有很大的不同。 列表(List) 列表是Python中的一种有序集合,可以随时添加和删除其中的元素。列表中的元素可以是任何数据类型,包括数字、字符串、其他列表等。列表使用方括号[]表示,元素之间用逗号,分隔。 定义和使用 # 定义一个列表 fruits = ['apple', 'banana

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

python 喷泉码

因为要完成毕业设计,毕业设计做的是数据分发与传输的东西。在网络中数据容易丢失,所以我用fountain code做所发送数据包的数据恢复。fountain code属于有限域编码的一部分,有很广泛的应用。 我们日常生活中使用的二维码,就用到foutain code做数据恢复。你遮住二维码的四分之一,用手机的相机也照样能识别。你遮住的四分之一就相当于丢失的数据包。 为了实现并理解foutain

python 点滴学

1 python 里面tuple是无法改变的 tuple = (1,),计算tuple里面只有一个元素,也要加上逗号 2  1 毕业论文改 2 leetcode第一题做出来