Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路

本文主要是介绍Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯计算地球大气层中热层金属坠物运动轨迹 | 🎯计算炮弹最佳弹射角度耦合微分方程 | 🎯计算电磁拉莫尔半径螺旋运动 | 🎯计算航天器重力弹弓运动力学微分方程 | 🎯计算双摆的混沌运动非线性微分方程,绘制相空图 | 🎯计算绝热和无粘流流体力学微分方程 | 🎯计算容器流体晃动自由表面简谐运动数学模型 | 🎯计算化学物质的伦纳德-琼斯势物理模型 | 🎯分析直流交流电阻电容电路

📜欧拉法 | 本文 - 用例

📜MATLAB雨刮通风空调模糊器和发电厂电力聚变器卷积神经

📜Python物理量和化学量数值计算

📜Python流感常微分方程房室数学模型

📜C++计算资本市场收益及成本分配数学方程

📜Python计算物理粒子及拉格朗日和哈密顿动力学

📜C代码快速傅里叶变换-分类和推理-常微分和偏微分方程

📜Python物理学有限差分微分求解器和动画波形传播

📜Julia评估劳动力市场经济数学模型价值策略选择

📜Python嵌入式动态用户调制解调响应式射频信号

📜Python机器人动力学和细胞酶常微分方程

📜Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

📜Python | C++ | MATLAB机器人正逆向运动学动力学求解器及算法

📜Python微磁学磁倾斜和西塔规则算法

📜Python烟雾液体弹性力微分模拟 | 出租车往返速度微分计算
在这里插入图片描述
在这里插入图片描述

🍇Python欧拉法

d S ( t ) d t = F ( t , S ( t ) ) \frac{d S(t)}{d t}=F(t, S(t)) dtdS(t)=F(t,S(t)) 为显式定义的一阶常微分方程。也就是说, F F F 是一个函数,它返回给定时间和状态值的状态的导数或变化。另外,令 t t t 为区间 [ t 0 , t f ] \left[t_0, t_f\right] [t0,tf] 的数字网格,间距为 h h h。不失一般性,我们假设 t 0 = 0 t_0=0 t0=0,并且对于某个正整数 N N N t f = N h t_f=N h tf=Nh

S ( t ) S(t) S(t) t j t_j tj 附近的线性近似为
S ( t j + 1 ) = S ( t j ) + ( t j + 1 − t j ) d S ( t j ) d t S\left(t_{j+1}\right)=S\left(t_j\right)+\left(t_{j+1}-t_j\right) \frac{d S\left(t_j\right)}{d t} S(tj+1)=S(tj)+(tj+1tj)dtdS(tj)
还可以写为:
S ( t j + 1 ) = S ( t j ) + h F ( t j , S ( t j ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_j, S\left(t_j\right)\right) S(tj+1)=S(tj)+hF(tj,S(tj))
这个公式称为显式欧拉公式,它允许我们在给定 S ( t j ) S\left(t_j\right) S(tj) 状态的情况下计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 状态的近似值。从给定的初始值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)开始,我们可以使用这个公式对状态进行积分直到 S ( t f ) S\left(t_f\right) S(tf);这些 S ( t ) S(t) S(t) 值是微分方程解的近似值。显式欧拉公式是解决初值问题最简单、最直观的方法。在任何状态 ( t j , S ( t j ) ) \left(t_j, S\left(t_j\right)\right) (tj,S(tj)),它在该状态下使用 F F F“指向”下一个状态,然后朝该方向移动 h h h的距离。尽管有更复杂和更准确的方法来解决这些问题,但它们都具有相同的基本结构。因此,我们明确列举了使用显式欧拉公式解决初始值问题的步骤。

假设我们有一个函数 F ( t , S ( t ) ) F(t, S(t)) F(t,S(t)) 计算 d S ( t ) d t \frac{d S(t)}{d t} dtdS(t),一个数值网格 t t t,区间 [ t 0 , t f ] \left[ t_0, t_f\right] [t0,tf],初始状态值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)。我们可以使用以下步骤计算 t t t 中每个 t j t_j tj S ( t j ) S\left(t_j\right) S(tj)

  • S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0) 存储在数组 S S S 中。
  • 计算 S ( t 1 ) = S 0 + h F ( t 0 , S 0 ) S\left(t_1\right)=S_0+h F\left(t_0, S_0\right) S(t1)=S0+hF(t0,S0)
  • S 1 = S ( t 1 ) S_1=S\left(t_1\right) S1=S(t1) 存储在 S S S
  • 计算 S ( t 2 ) = S 1 + h F ( t 1 , S 1 ) S\left(t_2\right)=S_1+h F\left(t_1, S_1\right) S(t2)=S1+hF(t1,S1)
  • S 2 = S ( t 1 ) S_2=S\left(t_1\right) S2=S(t1) 存储在 S S S​ 中。
  • 计算 S ( t f ) = S f − 1 + h F ( t f − 1 , S f − 1 ) S\left(t_f\right)=S_{f-1}+h F\left(t_{f-1}, S_{f-1}\right) S(tf)=Sf1+hF(tf1,Sf1)
  • S f = S ( t f ) S_f=S\left(t_f\right) Sf=S(tf) 存储在 S S S
  • S S S 是初始值问题的近似解

当使用具有这种结构的方法时,我们称该方法集成了常微分方程的解。

初始条件为 f 0 = − 1 f_0=-1 f0=1的微分方程 d f ( t ) d t = e − t \frac{d f(t)}{d t}=e^{-t} dtdf(t)=et有精确解 f ( t ) = − e − t f(t)=-e^{-t} f(t)=et 。使用显式欧拉公式,以 0.1 为增量,在 0 和 1 之间近似求解此初始值问题。绘制近似解和精确解之间的差异。

代码处理:

import numpy as np
import matplotlib.pyplot as pltplt.style.use('seaborn-poster')
%matplotlib inlinef = lambda t, s: np.exp(-t) 
h = 0.1 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

在上图中,我们可以看到每个点都是基于前一个点以线性方式进行的近似。从初始值,我们最终可以得到数值网格上解的近似值。如果我们对 h = 0.01 h=0.01 h=0.01 重复该过程,我们会得到更好的近似解:

h = 0.01 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'b--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

显式欧拉公式之所以被称为“显式”,是因为它只需要 t j t_j tj 处的信息来计算 t j + 1 t_{j+1} tj+1 处的状态。也就是说, S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 可以根据我们拥有的值(即 t j t_j tj S ( t j ) S\left(t_j\right) S(tj) )显式地编写。隐式欧拉公式可以通过在 t j + 1 t_{j+1} tj+1 周围取 S ( t ) S(t) S(t) 的线性近似并在 t j t_j tj 处计算来导出:
S ( t j + 1 ) = S ( t j ) + h F ( t j + 1 , S ( t j + 1 ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_{j+1}, S\left(t_{j+1}\right)\right) S(tj+1)=S(tj)+hF(tj+1,S(tj+1))
这个公式很奇特,因为它要求我们知道 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 才能计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1)!不过,有时候我们可以用这个公式来近似求解初值问题。在详细介绍如何使用隐式欧拉公式解决这些问题之前,我们先给出另一个隐式公式,称为梯形公式,它是显式和隐式欧拉公式的平均值:
S ( t j + 1 ) = S ( t j ) + h 2 ( F ( t j , S ( t j ) ) + F ( t j + 1 , S ( t j + 1 ) ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+\frac{h}{2}\left(F\left(t_j, S\left(t_j\right)\right)+F\left(t_{j+1}, S\left(t_{j+1}\right)\right)\right) S(tj+1)=S(tj)+2h(F(tj,S(tj))+F(tj+1,S(tj+1)))
为了说明如何求解这些隐式解,请再次考虑已简化为一阶的摆方程。

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081007

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言