深度学习物体检测论文阅读路线图以及官方实现代码

本文主要是介绍深度学习物体检测论文阅读路线图以及官方实现代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:hoya012

编译:ronghuaiyang

前戏

物体检测是CV领域非常重要的场景,自从2012年深度学习开始发威以来,物体检测也不例外的屈服于深度学习的淫威之下,特别是RCNN以来,物体检测进展飞速,各种网络,各种loss,各种trick,层出不穷,perfermance也是一路飙升,今天在github上找到一个repo,整理了2014到目前为止的物体检测的论文列表,还有对应的官方代码哦。好了,废话少说,让我们进入正题。

github地址:https://github.com/hoya012/deep_learning_object_detection

使用深度学习的物体检测论文列表,参考了这篇文章:https://arxiv.org/pdf/1809.02165v1.pdf

最近更新: 2018/12/07

从2014年到现在(2018年)的论文列表

640?wx_fmt=png

performance 表

DetectorVOC07 (mAP@IoU=0.5)VOC12 (mAP@IoU=0.5)COCO (mAP)Published In
R-CNN58.5--CVPR'14
OverFeat---ICLR'14
MultiBox29.0--CVPR'14
SPP-Net59.2--ECCV'14
MR-CNN78.2 (07+12)73.9 (07+12)-ICCV'15
AttentionNet---ICCV'15
Fast R-CNN70.0 (07+12)68.4 (07++12)-ICCV'15
Faster R-CNN73.2 (07+12)70.4 (07++12)-NIPS'15
YOLO v166.4 (07+12)57.9 (07++12)-CVPR'16
G-CNN66.866.4 (07+12)-CVPR'16
AZNet70.4-22.3CVPR'16
ION80.177.933.1CVPR'16
HyperNet76.3 (07+12)71.4 (07++12)-CVPR'16
OHEM78.9 (07+12)76.3 (07++12)22.4CVPR'16
MPN--33.2BMVC'16
SSD76.8 (07+12)74.9 (07++12)-ECCV'16
GBDNet77.2 (07+12)-27.0ECCV'16
CPF76.4 (07+12)72.6 (07++12)-ECCV'16
MS-CNN---ECCV'16
R-FCN79.5 (07+12)77.6 (07++12)29.9NIPS'16
PVANET---NIPSW'16
DeepID-Net69.0--PAMI'16
NoC71.6 (07+12)68.8 (07+12)27.2TPAMI'16
DSSD81.5 (07+12)80.0 (07++12)-arXiv'17
TDM--37.3CVPR'17
FPN--36.2CVPR'17
YOLO v278.6 (07+12)73.4 (07++12)-CVPR'17
RON77.6 (07+12)75.4 (07++12)-CVPR'17
DCN---ICCV'17
DeNet77.1 (07+12)73.9 (07++12)33.8ICCV'17
CoupleNet82.7 (07+12)80.4 (07++12)34.4ICCV'17
RetinaNet--39.1ICCV'17
Mask R-CNN---ICCV'17
DSOD77.7 (07+12)76.3 (07++12)-ICCV'17
SMN70.0--ICCV'17
YOLO v3--33.0Arxiv'18
SIN76.0 (07+12)73.1 (07++12)23.2CVPR'18
STDN80.9 (07+12)--CVPR'18
RefineDet83.8 (07+12)83.5 (07++12)41.8CVPR'18
MegDet---CVPR'18
RFBNet82.2 (07+12)--ECCV'18

2014年的论文

  • [R-CNN] Rich feature hierarchies for accurate object detection and semantic segmentation | Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik | [CVPR' 14] |[[pdf\]](https://arxiv.org/pdf/1311.2524.pdf) [[official code - caffe\]](https://github.com/rbgirshick/rcnn)

  • [OverFeat] OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | Pierre Sermanet, et al. | [ICLR' 14] |[[pdf\]](https://arxiv.org/pdf/1312.6229.pdf) [[official code - torch\]](https://github.com/sermanet/OverFeat)

  • [MultiBox] Scalable Object Detection using Deep Neural Networks | Dumitru Erhan, et al. | [CVPR' 14] |[[pdf\]](https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Erhan_Scalable_Object_Detection_2014_CVPR_paper.pdf)

  • [SPP-Net] Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition | Kaiming He, et al. | [ECCV' 14]|[[pdf\]](https://arxiv.org/pdf/1406.4729.pdf) [[official code - caffe\]](https://github.com/ShaoqingRen/SPP_net) [[unofficial code - keras\]](https://github.com/yhenon/keras-spp) [[unofficial code - tensorflow\]](https://github.com/peace195/sppnet)

2015的论文

  • [MR-CNN] Object detection via a multi-region & semantic segmentation-aware CNN model | Spyros Gidaris, Nikos Komodakis | [ICCV' 15] |[[pdf\]](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Gidaris_Object_Detection_via_ICCV_2015_paper.pdf) [[official code - caffe\]](https://github.com/gidariss/mrcnn-object-detection)

  • [DeepBox] DeepBox: Learning Objectness with Convolutional Networks | Weicheng Kuo, Bharath Hariharan, Jitendra Malik | [ICCV' 15] |[[pdf\]](https://arxiv.org/pdf/1505.02146.pdf) [[official code - caffe\]](https://github.com/weichengkuo/DeepBox)

  • [AttentionNet] AttentionNet: Aggregating Weak Directions for Accurate Object Detection | Donggeun Yoo, et al. | [ICCV' 15] |[[pdf\]](https://arxiv.org/pdf/1506.07704.pdf)

  • [Fast R-CNN] Fast R-CNN | Ross Girshick | [ICCV' 15] |[[pdf\]](https://arxiv.org/pdf/1504.08083.pdf) [[official code - caffe\]](https://github.com/rbgirshick/fast-rcnn)

  • [DeepProposal] DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers | Amir Ghodrati, et al. | [ICCV' 15] |[[pdf\]](https://arxiv.org/pdf/1510.04445.pdf) [[official code - matconvnet\]](https://github.com/aghodrati/deepproposal)

  • [Faster R-CNN, RPN] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | Shaoqing Ren, et al. | [NIPS' 15] |[[pdf\]](https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf) [[official code - caffe\]](https://github.com/rbgirshick/py-faster-rcnn) [[unofficial code - tensorflow\]](https://github.com/endernewton/tf-faster-rcnn) [[unofficial code - pytorch\]](https://github.com/jwyang/faster-rcnn.pytorch)

2016的论文

  • [YOLO v1] You Only Look Once: Unified, Real-Time Object Detection | Joseph Redmon, et al. | [CVPR' 16] |[[pdf\]](https://arxiv.org/pdf/1506.02640.pdf)[[official code - c\]](https://pjreddie.com/darknet/yolo/)

  • [G-CNN] G-CNN: an Iterative Grid Based Object Detector | Mahyar Najibi, et al. | [CVPR' 16] |[[pdf\]](https://arxiv.org/pdf/1512.07729.pdf)

  • [AZNet] Adaptive Object Detection Using Adjacency and Zoom Prediction | Yongxi Lu, Tara Javidi. | [CVPR' 16] |[[pdf\]](https://arxiv.org/pdf/1512.07711.pdf)

  • [ION] Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks | Sean Bell, et al. | [CVPR' 16] |[[pdf\]](https://arxiv.org/pdf/1512.04143.pdf)

  • [HyperNet] HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection | Tao Kong, et al. | [CVPR' 16] |[[pdf\]](https://arxiv.org/pdf/1604.00600.pdf)

  • [OHEM] Training Region-based Object Detectors with Online Hard Example Mining | Abhinav Shrivastava, et al. | [CVPR' 16] |[[pdf\]](https://arxiv.org/pdf/1604.03540.pdf) [[official code - caffe\]](https://github.com/abhi2610/ohem)

  • [CRAPF] CRAFT Objects from Images | Bin Yang, et al. | [CVPR' 16] |[[pdf\]](https://arxiv.org/pdf/1604.03239.pdf) [[official code - caffe\]](https://github.com/byangderek/CRAFT)

  • [MPN] A MultiPath Network for Object Detection | Sergey Zagoruyko, et al. | [BMVC' 16] |[[pdf\]](https://arxiv.org/pdf/1604.02135.pdf) [[official code - torch\]](https://github.com/facebookresearch/multipathnet)

  • [SSD] SSD: Single Shot MultiBox Detector | Wei Liu, et al. | [ECCV' 16] |[[pdf\]](https://arxiv.org/pdf/1512.02325.pdf) [[official code - caffe\]](https://github.com/weiliu89/caffe/tree/ssd) [[unofficial code - tensorflow\]](https://github.com/balancap/SSD-Tensorflow) [[unofficial code - pytorch\]](https://github.com/amdegroot/ssd.pytorch)

  • [GBDNet] Crafting GBD-Net for Object Detection | Xingyu Zeng, et al. | [ECCV' 16] |[[pdf\]](https://arxiv.org/pdf/1610.02579.pdf) [[official code - caffe\]](https://github.com/craftGBD/craftGBD)

  • [CPF] Contextual Priming and Feedback for Faster R-CNN | Abhinav Shrivastava and Abhinav Gupta | [ECCV' 16] |[[pdf\]](https://pdfs.semanticscholar.org/40e7/4473cb82231559cbaeaa44989e9bbfe7ec3f.pdf)

  • [MS-CNN] A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection | Zhaowei Cai, et al. | [ECCV' 16] |[[pdf\]](https://arxiv.org/pdf/1607.07155.pdf) [[official code - caffe\]](https://github.com/zhaoweicai/mscnn)

  • [R-FCN] R-FCN: Object Detection via Region-based Fully Convolutional Networks | Jifeng Dai, et al. | [NIPS' 16] |[[pdf\]](https://arxiv.org/pdf/1605.06409.pdf)[[official code - caffe\]](https://github.com/daijifeng001/R-FCN) [[unofficial code - caffe\]](https://github.com/YuwenXiong/py-R-FCN)

  • [PVANET] PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection | Kye-Hyeon Kim, et al. | [NIPSW' 16] |[[pdf\]](https://arxiv.org/pdf/1608.08021.pdf) [[official code - caffe\]](https://github.com/sanghoon/pva-faster-rcnn)

  • [DeepID-Net] DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection | Wanli Ouyang, et al. | [PAMI' 16] |[[pdf\]](https://arxiv.org/pdf/1412.5661.pdf)

  • [NoC] Object Detection Networks on Convolutional Feature Maps | Shaoqing Ren, et al. | [TPAMI' 16] |[[pdf\]](https://arxiv.org/pdf/1504.06066.pdf)

2017的论文

  • [DSSD] DSSD : Deconvolutional Single Shot Detector | Cheng-Yang Fu1, et al. | [arXiv' 17] |[[pdf\]](https://arxiv.org/pdf/1701.06659.pdf) [[official code - caffe\]](https://github.com/chengyangfu/caffe/tree/dssd)

  • [TDM] Beyond Skip Connections: Top-Down Modulation for Object Detection | Abhinav Shrivastava, et al. | [CVPR' 17] |[[pdf\]](https://arxiv.org/pdf/1612.06851.pdf)

  • [FPN] Feature Pyramid Networks for Object Detection | Tsung-Yi Lin, et al. | [CVPR' 17] |[[pdf\]](http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf) [[unofficial code - caffe\]](https://github.com/unsky/FPN)

  • [YOLO v2] YOLO9000: Better, Faster, Stronger | Joseph Redmon, Ali Farhadi | [CVPR' 17] |[[pdf\]](https://arxiv.org/pdf/1612.08242.pdf) [[official code - c\]](https://pjreddie.com/darknet/yolo/)[[unofficial code - caffe\]](https://github.com/quhezheng/caffe_yolo_v2) [[unofficial code - tensorflow\]](https://github.com/nilboy/tensorflow-yolo) [[unofficial code - tensorflow\]](https://github.com/sualab/object-detection-yolov2) [[unofficial code - pytorch\]](https://github.com/longcw/yolo2-pytorch)

  • [RON] RON: Reverse Connection with Objectness Prior Networks for Object Detection | Tao Kong, et al. | [CVPR' 17] |[[pdf\]](https://arxiv.org/pdf/1707.01691.pdf) [[official code - caffe\]](https://github.com/taokong/RON) [[unofficial code - tensorflow\]](https://github.com/HiKapok/RON_Tensorflow)

  • [DCN] Deformable Convolutional Networks | Jifeng Dai, et al. | [ICCV' 17] |[[pdf\]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.pdf) [[official code - mxnet\]](https://github.com/msracver/Deformable-ConvNets) [[unofficial code - tensorflow\]](https://github.com/Zardinality/TF_Deformable_Net) [[unofficial code - pytorch\]](https://github.com/oeway/pytorch-deform-conv)

  • [DeNet] DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling | Lachlan Tychsen-Smith, Lars Petersson | [ICCV' 17] |[[pdf\]](https://arxiv.org/pdf/1703.10295.pdf) [[official code - theano\]](https://github.com/lachlants/denet)

  • [CoupleNet] CoupleNet: Coupling Global Structure with Local Parts for Object Detection | Yousong Zhu, et al. | [ICCV' 17]|[[pdf\]](https://arxiv.org/pdf/1708.02863.pdf) [[official code - caffe\]](https://github.com/tshizys/CoupleNet)

  • [RetinaNet] Focal Loss for Dense Object Detection | Tsung-Yi Lin, et al. | [ICCV' 17] |[[pdf\]](https://arxiv.org/pdf/1708.02002.pdf) [[official code - keras\]](https://github.com/fizyr/keras-retinanet)[[unofficial code - pytorch\]](https://github.com/kuangliu/pytorch-retinanet) [[unofficial code - mxnet\]](https://github.com/unsky/RetinaNet) [[unofficial code - tensorflow\]](https://github.com/tensorflow/tpu/tree/master/models/official/retinanet)

  • [Mask R-CNN] Mask R-CNN | Kaiming He, et al. | [ICCV' 17] |[[pdf\]](http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf) [[official code - caffe2\]](https://github.com/facebookresearch/Detectron) [[unofficial code - tensorflow\]](https://github.com/matterport/Mask_RCNN) [[unofficial code - tensorflow\]](https://github.com/CharlesShang/FastMaskRCNN) [[unofficial code - pytorch\]](https://github.com/multimodallearning/pytorch-mask-rcnn)

  • [DSOD] DSOD: Learning Deeply Supervised Object Detectors from Scratch | Zhiqiang Shen, et al. | [ICCV' 17] |[[pdf\]](https://arxiv.org/pdf/1708.01241.pdf)[[official code - caffe\]](https://github.com/szq0214/DSOD) [[unofficial code - pytorch\]](https://github.com/uoip/SSD-variants)

  • [SMN] Spatial Memory for Context Reasoning in Object Detection | Xinlei Chen, Abhinav Gupta | [ICCV' 17] |[[pdf\]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Chen_Spatial_Memory_for_ICCV_2017_paper.pdf)

2018的论文

  • [YOLO v3] YOLOv3: An Incremental Improvement | Joseph Redmon, Ali Farhadi | [arXiv' 18] |[[pdf\]](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [[official code - c\]](https://pjreddie.com/darknet/yolo/)[[unofficial code - pytorch\]](https://github.com/ayooshkathuria/pytorch-yolo-v3) [[unofficial code - pytorch\]](https://github.com/eriklindernoren/PyTorch-YOLOv3) [[unofficial code - keras\]](https://github.com/qqwweee/keras-yolo3) [[unofficial code - tensorflow\]](https://github.com/mystic123/tensorflow-yolo-v3)

  • [ZIP] Zoom Out-and-In Network with Recursive Training for Object Proposal | Hongyang Li, et al. | [IJCV' 18] |[[pdf\]](https://arxiv.org/pdf/1702.05711.pdf)[[official code - caffe\]](https://github.com/hli2020/zoom_network)

  • [SIN] Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships | Yong Liu, et al. | [CVPR' 18] |[[pdf\]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf) [[official code - tensorflow\]](https://github.com/choasup/SIN)

  • [STDN] Scale-Transferrable Object Detection | Peng Zhou, et al. | [CVPR' 18] |[[pdf\]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf)

  • [RefineDet] Single-Shot Refinement Neural Network for Object Detection | Shifeng Zhang, et al. | [CVPR' 18] |[[pdf\]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf)[[official code - caffe\]](https://github.com/sfzhang15/RefineDet) [[unofficial code - chainer\]](https://github.com/fukatani/RefineDet_chainer) [[unofficial code - pytorch\]](https://github.com/lzx1413/PytorchSSD)

  • [MegDet] MegDet: A Large Mini-Batch Object Detector | Chao Peng, et al. | [CVPR' 18] |[[pdf\]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_MegDet_A_Large_CVPR_2018_paper.pdf)

  • [DA Faster R-CNN] Domain Adaptive Faster R-CNN for Object Detection in the Wild | Yuhua Chen, et al. | [CVPR' 18] |[[pdf\]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Domain_Adaptive_Faster_CVPR_2018_paper.pdf) [[official code - caffe\]](https://github.com/yuhuayc/da-faster-rcnn)

  • [SNIP] An Analysis of Scale Invariance in Object Detection – SNIP | Bharat Singh, Larry S. Davis | [CVPR' 18] |[[pdf\]](https://arxiv.org/pdf/1711.08189.pdf)

  • [Relation-Network] Relation Networks for Object Detection | Han Hu, et al. | [CVPR' 18] |[[pdf\]](https://arxiv.org/pdf/1711.11575.pdf) [[official code - mxnet\]](https://github.com/msracver/Relation-Networks-for-Object-Detection)

  • [Cascade R-CNN] Cascade R-CNN: Delving into High Quality Object Detection | Zhaowei Cai, et al. | [CVPR' 18] |[[pdf\]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Cai_Cascade_R-CNN_Delving_CVPR_2018_paper.pdf)[[official code - caffe\]](https://github.com/zhaoweicai/cascade-rcnn)

  • Finding Tiny Faces in the Wild with Generative Adversarial Network | Yancheng Bai, et al. | [CVPR' 18] |[[pdf\]](https://ivul.kaust.edu.sa/Documents/Publications/2018/Finding%20Tiny%20Faces%20in%20the%20Wild%20with%20Generative%20Adversarial%20Network.pdf)

  • [STDnet] STDnet: A ConvNet for Small Target Detection | Brais Bosquet, et al. | [BMVC' 18] |[[pdf\]](http://bmvc2018.org/contents/papers/0897.pdf)

  • [RFBNet] Receptive Field Block Net for Accurate and Fast Object Detection | Songtao Liu, et al. | [ECCV' 18] |[[pdf\]](https://arxiv.org/pdf/1711.07767.pdf)[[official code - pytorch\]](https://github.com/ruinmessi/RFBNet)

  • Zero-Annotation Object Detection with Web Knowledge Transfer | Qingyi Tao, et al. | [ECCV' 18] |[[pdf\]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Qingyi_Tao_Zero-Annotation_Object_Detection_ECCV_2018_paper.pdf)

  • [CornerNet] CornerNet: Detecting Objects as Paired Keypoints | Hei Law, et al. | [ECCV' 18] |[[pdf\]](https://arxiv.org/pdf/1808.01244.pdf) [[official code - pytorch\]](https://github.com/princeton-vl/CornerNet)

  • [Pelee] Pelee: A Real-Time Object Detection System on Mobile Devices | Jun Wang, et al. | [NIPS' 18] |[[pdf\]](http://papers.nips.cc/paper/7466-pelee-a-real-time-object-detection-system-on-mobile-devices.pdf) [[official code - caffe\]](https://github.com/Robert-JunWang/Pelee)

  • [HKRM] Hybrid Knowledge Routed Modules for Large-scale Object Detection | ChenHan Jiang, et al. | [NIPS' 18] |[[pdf\]](http://papers.nips.cc/paper/7428-hybrid-knowledge-routed-modules-for-large-scale-object-detection.pdf)

  • [MetaAnchor] MetaAnchor: Learning to Detect Objects with Customized Anchors | Tong Yang, et al. | [NIPS' 18] |[[pdf\]](http://papers.nips.cc/paper/7315-metaanchor-learning-to-detect-objects-with-customized-anchors.pdf)

  • [SNIPER] SNIPER: Efficient Multi-Scale Training | Bharat Singh, et al. | [NIPS' 18] |[[pdf\]](http://papers.nips.cc/paper/8143-sniper-efficient-multi-scale-training.pdf)

2019的论文

  • [M2Det] M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | Qijie Zhao, et al. | [AAAI' 19] |[[pdf\]](https://arxiv.org/pdf/1811.04533.pdf)

640?wx_fmt=png

往期精彩回顾


1、最全的AI速查表|神经网络,机器学习,深度学习,大数据

2、资源|10个机器学习和深度学习的必读免费课程

3、论文看吐了没有?做研究的同学瞧一瞧看一看啦,教你读论文:为什么读以及如何读

4、人人都能看得懂的深度学习介绍!全篇没有一个数学符号!

5、想找个数据科学家的工作吗?别再随大流了!


本文可以任意转载,转载时请注明作者及原文地址

640?wx_fmt=jpeg

请长按或扫描二维码关注本公众号

这篇关于深度学习物体检测论文阅读路线图以及官方实现代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080883

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来