本文主要是介绍深度学习物体检测论文阅读路线图以及官方实现代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”
作者:hoya012
编译:ronghuaiyang
物体检测是CV领域非常重要的场景,自从2012年深度学习开始发威以来,物体检测也不例外的屈服于深度学习的淫威之下,特别是RCNN以来,物体检测进展飞速,各种网络,各种loss,各种trick,层出不穷,perfermance也是一路飙升,今天在github上找到一个repo,整理了2014到目前为止的物体检测的论文列表,还有对应的官方代码哦。好了,废话少说,让我们进入正题。
github地址:https://github.com/hoya012/deep_learning_object_detection
使用深度学习的物体检测论文列表,参考了这篇文章:https://arxiv.org/pdf/1809.02165v1.pdf。
最近更新: 2018/12/07
从2014年到现在(2018年)的论文列表
performance 表
Detector | VOC07 (mAP@IoU=0.5) | VOC12 (mAP@IoU=0.5) | COCO (mAP) | Published In |
---|---|---|---|---|
R-CNN | 58.5 | - | - | CVPR'14 |
OverFeat | - | - | - | ICLR'14 |
MultiBox | 29.0 | - | - | CVPR'14 |
SPP-Net | 59.2 | - | - | ECCV'14 |
MR-CNN | 78.2 (07+12) | 73.9 (07+12) | - | ICCV'15 |
AttentionNet | - | - | - | ICCV'15 |
Fast R-CNN | 70.0 (07+12) | 68.4 (07++12) | - | ICCV'15 |
Faster R-CNN | 73.2 (07+12) | 70.4 (07++12) | - | NIPS'15 |
YOLO v1 | 66.4 (07+12) | 57.9 (07++12) | - | CVPR'16 |
G-CNN | 66.8 | 66.4 (07+12) | - | CVPR'16 |
AZNet | 70.4 | - | 22.3 | CVPR'16 |
ION | 80.1 | 77.9 | 33.1 | CVPR'16 |
HyperNet | 76.3 (07+12) | 71.4 (07++12) | - | CVPR'16 |
OHEM | 78.9 (07+12) | 76.3 (07++12) | 22.4 | CVPR'16 |
MPN | - | - | 33.2 | BMVC'16 |
SSD | 76.8 (07+12) | 74.9 (07++12) | - | ECCV'16 |
GBDNet | 77.2 (07+12) | - | 27.0 | ECCV'16 |
CPF | 76.4 (07+12) | 72.6 (07++12) | - | ECCV'16 |
MS-CNN | - | - | - | ECCV'16 |
R-FCN | 79.5 (07+12) | 77.6 (07++12) | 29.9 | NIPS'16 |
PVANET | - | - | - | NIPSW'16 |
DeepID-Net | 69.0 | - | - | PAMI'16 |
NoC | 71.6 (07+12) | 68.8 (07+12) | 27.2 | TPAMI'16 |
DSSD | 81.5 (07+12) | 80.0 (07++12) | - | arXiv'17 |
TDM | - | - | 37.3 | CVPR'17 |
FPN | - | - | 36.2 | CVPR'17 |
YOLO v2 | 78.6 (07+12) | 73.4 (07++12) | - | CVPR'17 |
RON | 77.6 (07+12) | 75.4 (07++12) | - | CVPR'17 |
DCN | - | - | - | ICCV'17 |
DeNet | 77.1 (07+12) | 73.9 (07++12) | 33.8 | ICCV'17 |
CoupleNet | 82.7 (07+12) | 80.4 (07++12) | 34.4 | ICCV'17 |
RetinaNet | - | - | 39.1 | ICCV'17 |
Mask R-CNN | - | - | - | ICCV'17 |
DSOD | 77.7 (07+12) | 76.3 (07++12) | - | ICCV'17 |
SMN | 70.0 | - | - | ICCV'17 |
YOLO v3 | - | - | 33.0 | Arxiv'18 |
SIN | 76.0 (07+12) | 73.1 (07++12) | 23.2 | CVPR'18 |
STDN | 80.9 (07+12) | - | - | CVPR'18 |
RefineDet | 83.8 (07+12) | 83.5 (07++12) | 41.8 | CVPR'18 |
MegDet | - | - | - | CVPR'18 |
RFBNet | 82.2 (07+12) | - | - | ECCV'18 |
2014年的论文
[R-CNN] Rich feature hierarchies for accurate object detection and semantic segmentation | Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik | [CVPR' 14] |[
[pdf\]
](https://arxiv.org/pdf/1311.2524.pdfhttps://github.com/rbgirshick/rcnn)[OverFeat] OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | Pierre Sermanet, et al. | [ICLR' 14] |[
[pdf\]
](https://arxiv.org/pdf/1312.6229.pdf) [[official code - torch\]
](https://github.com/sermanet/OverFeat)[MultiBox] Scalable Object Detection using Deep Neural Networks | Dumitru Erhan, et al. | [CVPR' 14] |[
[pdf\]
](https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Erhan_Scalable_Object_Detection_2014_CVPR_paper.pdf)[SPP-Net] Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition | Kaiming He, et al. | [ECCV' 14]|[
[pdf\]
](https://arxiv.org/pdf/1406.4729.pdf) [[official code - caffe\]
](https://github.com/ShaoqingRen/SPP_net) [[unofficial code - keras\]
](https://github.com/yhenon/keras-spp) [[unofficial code - tensorflow\]
](https://github.com/peace195/sppnet)
2015的论文
[MR-CNN] Object detection via a multi-region & semantic segmentation-aware CNN model | Spyros Gidaris, Nikos Komodakis | [ICCV' 15] |[
[pdf\]
](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Gidaris_Object_Detection_via_ICCV_2015_paper.pdf) [[official code - caffe\]
](https://github.com/gidariss/mrcnn-object-detection)[DeepBox] DeepBox: Learning Objectness with Convolutional Networks | Weicheng Kuo, Bharath Hariharan, Jitendra Malik | [ICCV' 15] |[
[pdf\]
](https://arxiv.org/pdf/1505.02146.pdf) [[official code - caffe\]
](https://github.com/weichengkuo/DeepBox)[AttentionNet] AttentionNet: Aggregating Weak Directions for Accurate Object Detection | Donggeun Yoo, et al. | [ICCV' 15] |[
[pdf\]
](https://arxiv.org/pdf/1506.07704.pdf)[Fast R-CNN] Fast R-CNN | Ross Girshick | [ICCV' 15] |[
[pdf\]
](https://arxiv.org/pdf/1504.08083.pdf) [[official code - caffe\]
](https://github.com/rbgirshick/fast-rcnn)[DeepProposal] DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers | Amir Ghodrati, et al. | [ICCV' 15] |[
[pdf\]
](https://arxiv.org/pdf/1510.04445.pdf) [[official code - matconvnet\]
](https://github.com/aghodrati/deepproposal)[Faster R-CNN, RPN] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | Shaoqing Ren, et al. | [NIPS' 15] |[
[pdf\]
](https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf) [[official code - caffe\]
](https://github.com/rbgirshick/py-faster-rcnn) [[unofficial code - tensorflow\]
](https://github.com/endernewton/tf-faster-rcnn) [[unofficial code - pytorch\]
](https://github.com/jwyang/faster-rcnn.pytorch)
2016的论文
[YOLO v1] You Only Look Once: Unified, Real-Time Object Detection | Joseph Redmon, et al. | [CVPR' 16] |[
[pdf\]
](https://arxiv.org/pdf/1506.02640.pdf)[[official code - c\]
](https://pjreddie.com/darknet/yolo/)[G-CNN] G-CNN: an Iterative Grid Based Object Detector | Mahyar Najibi, et al. | [CVPR' 16] |[
[pdf\]
](https://arxiv.org/pdf/1512.07729.pdf)[AZNet] Adaptive Object Detection Using Adjacency and Zoom Prediction | Yongxi Lu, Tara Javidi. | [CVPR' 16] |[
[pdf\]
](https://arxiv.org/pdf/1512.07711.pdf)[ION] Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks | Sean Bell, et al. | [CVPR' 16] |[
[pdf\]
](https://arxiv.org/pdf/1512.04143.pdf)[HyperNet] HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection | Tao Kong, et al. | [CVPR' 16] |[
[pdf\]
](https://arxiv.org/pdf/1604.00600.pdf)[OHEM] Training Region-based Object Detectors with Online Hard Example Mining | Abhinav Shrivastava, et al. | [CVPR' 16] |[
[pdf\]
](https://arxiv.org/pdf/1604.03540.pdf) [[official code - caffe\]
](https://github.com/abhi2610/ohem)[CRAPF] CRAFT Objects from Images | Bin Yang, et al. | [CVPR' 16] |[
[pdf\]
](https://arxiv.org/pdf/1604.03239.pdf) [[official code - caffe\]
](https://github.com/byangderek/CRAFT)[MPN] A MultiPath Network for Object Detection | Sergey Zagoruyko, et al. | [BMVC' 16] |[
[pdf\]
](https://arxiv.org/pdf/1604.02135.pdf) [[official code - torch\]
](https://github.com/facebookresearch/multipathnet)[SSD] SSD: Single Shot MultiBox Detector | Wei Liu, et al. | [ECCV' 16] |[
[pdf\]
](https://arxiv.org/pdf/1512.02325.pdf) [[official code - caffe\]
](https://github.com/weiliu89/caffe/tree/ssd) [[unofficial code - tensorflow\]
](https://github.com/balancap/SSD-Tensorflow) [[unofficial code - pytorch\]
](https://github.com/amdegroot/ssd.pytorch)[GBDNet] Crafting GBD-Net for Object Detection | Xingyu Zeng, et al. | [ECCV' 16] |[
[pdf\]
](https://arxiv.org/pdf/1610.02579.pdf) [[official code - caffe\]
](https://github.com/craftGBD/craftGBD)[CPF] Contextual Priming and Feedback for Faster R-CNN | Abhinav Shrivastava and Abhinav Gupta | [ECCV' 16] |[
[pdf\]
](https://pdfs.semanticscholar.org/40e7/4473cb82231559cbaeaa44989e9bbfe7ec3f.pdf)[MS-CNN] A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection | Zhaowei Cai, et al. | [ECCV' 16] |[
[pdf\]
](https://arxiv.org/pdf/1607.07155.pdf) [[official code - caffe\]
](https://github.com/zhaoweicai/mscnn)[R-FCN] R-FCN: Object Detection via Region-based Fully Convolutional Networks | Jifeng Dai, et al. | [NIPS' 16] |[
[pdf\]
](https://arxiv.org/pdf/1605.06409.pdf)[[official code - caffe\]
](https://github.com/daijifeng001/R-FCN) [[unofficial code - caffe\]
](https://github.com/YuwenXiong/py-R-FCN)[PVANET] PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection | Kye-Hyeon Kim, et al. | [NIPSW' 16] |[
[pdf\]
](https://arxiv.org/pdf/1608.08021.pdf) [[official code - caffe\]
](https://github.com/sanghoon/pva-faster-rcnn)[DeepID-Net] DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection | Wanli Ouyang, et al. | [PAMI' 16] |[
[pdf\]
](https://arxiv.org/pdf/1412.5661.pdf)[NoC] Object Detection Networks on Convolutional Feature Maps | Shaoqing Ren, et al. | [TPAMI' 16] |[
[pdf\]
](https://arxiv.org/pdf/1504.06066.pdf)
2017的论文
[DSSD] DSSD : Deconvolutional Single Shot Detector | Cheng-Yang Fu1, et al. | [arXiv' 17] |[
[pdf\]
](https://arxiv.org/pdf/1701.06659.pdf) [[official code - caffe\]
](https://github.com/chengyangfu/caffe/tree/dssd)[TDM] Beyond Skip Connections: Top-Down Modulation for Object Detection | Abhinav Shrivastava, et al. | [CVPR' 17] |[
[pdf\]
](https://arxiv.org/pdf/1612.06851.pdf)[FPN] Feature Pyramid Networks for Object Detection | Tsung-Yi Lin, et al. | [CVPR' 17] |[
[pdf\]
](http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf) [[unofficial code - caffe\]
](https://github.com/unsky/FPN)[YOLO v2] YOLO9000: Better, Faster, Stronger | Joseph Redmon, Ali Farhadi | [CVPR' 17] |[
[pdf\]
](https://arxiv.org/pdf/1612.08242.pdf) [[official code - c\]
](https://pjreddie.com/darknet/yolo/)[[unofficial code - caffe\]
](https://github.com/quhezheng/caffe_yolo_v2) [[unofficial code - tensorflow\]
](https://github.com/nilboy/tensorflow-yolo) [[unofficial code - tensorflow\]
](https://github.com/sualab/object-detection-yolov2) [[unofficial code - pytorch\]
](https://github.com/longcw/yolo2-pytorch)[RON] RON: Reverse Connection with Objectness Prior Networks for Object Detection | Tao Kong, et al. | [CVPR' 17] |[
[pdf\]
](https://arxiv.org/pdf/1707.01691.pdf) [[official code - caffe\]
](https://github.com/taokong/RON) [[unofficial code - tensorflow\]
](https://github.com/HiKapok/RON_Tensorflow)[DCN] Deformable Convolutional Networks | Jifeng Dai, et al. | [ICCV' 17] |[
[pdf\]
](http://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.pdf) [[official code - mxnet\]
](https://github.com/msracver/Deformable-ConvNets) [[unofficial code - tensorflow\]
](https://github.com/Zardinality/TF_Deformable_Net) [[unofficial code - pytorch\]
](https://github.com/oeway/pytorch-deform-conv)[DeNet] DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling | Lachlan Tychsen-Smith, Lars Petersson | [ICCV' 17] |[
[pdf\]
](https://arxiv.org/pdf/1703.10295.pdf) [[official code - theano\]
](https://github.com/lachlants/denet)[CoupleNet] CoupleNet: Coupling Global Structure with Local Parts for Object Detection | Yousong Zhu, et al. | [ICCV' 17]|[
[pdf\]
](https://arxiv.org/pdf/1708.02863.pdf) [[official code - caffe\]
](https://github.com/tshizys/CoupleNet)[RetinaNet] Focal Loss for Dense Object Detection | Tsung-Yi Lin, et al. | [ICCV' 17] |[
[pdf\]
](https://arxiv.org/pdf/1708.02002.pdf) [[official code - keras\]
](https://github.com/fizyr/keras-retinanet)[[unofficial code - pytorch\]
](https://github.com/kuangliu/pytorch-retinanet) [[unofficial code - mxnet\]
](https://github.com/unsky/RetinaNet) [[unofficial code - tensorflow\]
](https://github.com/tensorflow/tpu/tree/master/models/official/retinanet)[Mask R-CNN] Mask R-CNN | Kaiming He, et al. | [ICCV' 17] |[
[pdf\]
](http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf) [[official code - caffe2\]
](https://github.com/facebookresearch/Detectron) [[unofficial code - tensorflow\]
](https://github.com/matterport/Mask_RCNN) [[unofficial code - tensorflow\]
](https://github.com/CharlesShang/FastMaskRCNN) [[unofficial code - pytorch\]
](https://github.com/multimodallearning/pytorch-mask-rcnn)[DSOD] DSOD: Learning Deeply Supervised Object Detectors from Scratch | Zhiqiang Shen, et al. | [ICCV' 17] |[
[pdf\]
](https://arxiv.org/pdf/1708.01241.pdf)[[official code - caffe\]
](https://github.com/szq0214/DSOD) [[unofficial code - pytorch\]
](https://github.com/uoip/SSD-variants)[SMN] Spatial Memory for Context Reasoning in Object Detection | Xinlei Chen, Abhinav Gupta | [ICCV' 17] |[
[pdf\]
](http://openaccess.thecvf.com/content_ICCV_2017/papers/Chen_Spatial_Memory_for_ICCV_2017_paper.pdf)
2018的论文
[YOLO v3] YOLOv3: An Incremental Improvement | Joseph Redmon, Ali Farhadi | [arXiv' 18] |[
[pdf\]
](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [[official code - c\]
](https://pjreddie.com/darknet/yolo/)[[unofficial code - pytorch\]
](https://github.com/ayooshkathuria/pytorch-yolo-v3) [[unofficial code - pytorch\]
](https://github.com/eriklindernoren/PyTorch-YOLOv3) [[unofficial code - keras\]
](https://github.com/qqwweee/keras-yolo3) [[unofficial code - tensorflow\]
](https://github.com/mystic123/tensorflow-yolo-v3)[ZIP] Zoom Out-and-In Network with Recursive Training for Object Proposal | Hongyang Li, et al. | [IJCV' 18] |[
[pdf\]
](https://arxiv.org/pdf/1702.05711.pdf)[[official code - caffe\]
](https://github.com/hli2020/zoom_network)[SIN] Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships | Yong Liu, et al. | [CVPR' 18] |[
[pdf\]
](http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf) [[official code - tensorflow\]
](https://github.com/choasup/SIN)[STDN] Scale-Transferrable Object Detection | Peng Zhou, et al. | [CVPR' 18] |[
[pdf\]
](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf)[RefineDet] Single-Shot Refinement Neural Network for Object Detection | Shifeng Zhang, et al. | [CVPR' 18] |[
[pdf\]
](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf)[[official code - caffe\]
](https://github.com/sfzhang15/RefineDet) [[unofficial code - chainer\]
](https://github.com/fukatani/RefineDet_chainer) [[unofficial code - pytorch\]
](https://github.com/lzx1413/PytorchSSD)[MegDet] MegDet: A Large Mini-Batch Object Detector | Chao Peng, et al. | [CVPR' 18] |[
[pdf\]
](http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_MegDet_A_Large_CVPR_2018_paper.pdf)[DA Faster R-CNN] Domain Adaptive Faster R-CNN for Object Detection in the Wild | Yuhua Chen, et al. | [CVPR' 18] |[
[pdf\]
](http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Domain_Adaptive_Faster_CVPR_2018_paper.pdf) [[official code - caffe\]
](https://github.com/yuhuayc/da-faster-rcnn)[SNIP] An Analysis of Scale Invariance in Object Detection – SNIP | Bharat Singh, Larry S. Davis | [CVPR' 18] |[
[pdf\]
](https://arxiv.org/pdf/1711.08189.pdf)[Relation-Network] Relation Networks for Object Detection | Han Hu, et al. | [CVPR' 18] |[
[pdf\]
](https://arxiv.org/pdf/1711.11575.pdf) [[official code - mxnet\]
](https://github.com/msracver/Relation-Networks-for-Object-Detection)[Cascade R-CNN] Cascade R-CNN: Delving into High Quality Object Detection | Zhaowei Cai, et al. | [CVPR' 18] |[
[pdf\]
](http://openaccess.thecvf.com/content_cvpr_2018/papers/Cai_Cascade_R-CNN_Delving_CVPR_2018_paper.pdf)[[official code - caffe\]
](https://github.com/zhaoweicai/cascade-rcnn)Finding Tiny Faces in the Wild with Generative Adversarial Network | Yancheng Bai, et al. | [CVPR' 18] |[
[pdf\]
](https://ivul.kaust.edu.sa/Documents/Publications/2018/Finding%20Tiny%20Faces%20in%20the%20Wild%20with%20Generative%20Adversarial%20Network.pdf)[STDnet] STDnet: A ConvNet for Small Target Detection | Brais Bosquet, et al. | [BMVC' 18] |[
[pdf\]
](http://bmvc2018.org/contents/papers/0897.pdf)[RFBNet] Receptive Field Block Net for Accurate and Fast Object Detection | Songtao Liu, et al. | [ECCV' 18] |[
[pdf\]
](https://arxiv.org/pdf/1711.07767.pdf)[[official code - pytorch\]
](https://github.com/ruinmessi/RFBNet)Zero-Annotation Object Detection with Web Knowledge Transfer | Qingyi Tao, et al. | [ECCV' 18] |[
[pdf\]
](http://openaccess.thecvf.com/content_ECCV_2018/papers/Qingyi_Tao_Zero-Annotation_Object_Detection_ECCV_2018_paper.pdf)[CornerNet] CornerNet: Detecting Objects as Paired Keypoints | Hei Law, et al. | [ECCV' 18] |[
[pdf\]
](https://arxiv.org/pdf/1808.01244.pdf) [[official code - pytorch\]
](https://github.com/princeton-vl/CornerNet)[Pelee] Pelee: A Real-Time Object Detection System on Mobile Devices | Jun Wang, et al. | [NIPS' 18] |[
[pdf\]
](http://papers.nips.cc/paper/7466-pelee-a-real-time-object-detection-system-on-mobile-devices.pdf) [[official code - caffe\]
](https://github.com/Robert-JunWang/Pelee)[HKRM] Hybrid Knowledge Routed Modules for Large-scale Object Detection | ChenHan Jiang, et al. | [NIPS' 18] |[
[pdf\]
](http://papers.nips.cc/paper/7428-hybrid-knowledge-routed-modules-for-large-scale-object-detection.pdf)[MetaAnchor] MetaAnchor: Learning to Detect Objects with Customized Anchors | Tong Yang, et al. | [NIPS' 18] |[
[pdf\]
](http://papers.nips.cc/paper/7315-metaanchor-learning-to-detect-objects-with-customized-anchors.pdf)[SNIPER] SNIPER: Efficient Multi-Scale Training | Bharat Singh, et al. | [NIPS' 18] |[
[pdf\]
](http://papers.nips.cc/paper/8143-sniper-efficient-multi-scale-training.pdf)
2019的论文
[M2Det] M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | Qijie Zhao, et al. | [AAAI' 19] |[
[pdf\]
](https://arxiv.org/pdf/1811.04533.pdf
往期精彩回顾
1、最全的AI速查表|神经网络,机器学习,深度学习,大数据
2、资源|10个机器学习和深度学习的必读免费课程
3、论文看吐了没有?做研究的同学瞧一瞧看一看啦,教你读论文:为什么读以及如何读
4、人人都能看得懂的深度学习介绍!全篇没有一个数学符号!
5、想找个数据科学家的工作吗?别再随大流了!
本文可以任意转载,转载时请注明作者及原文地址。
请长按或扫描二维码关注本公众号
这篇关于深度学习物体检测论文阅读路线图以及官方实现代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!