FAT:一种快速的Triplet Loss近似方法,学习更鲁棒的特征表示,并进行有噪声标签的提纯...

本文主要是介绍FAT:一种快速的Triplet Loss近似方法,学习更鲁棒的特征表示,并进行有噪声标签的提纯...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


导读

Triplet的两大问题,计算复杂度和噪声敏感,看看这篇文章如何用一种对Triple的近似的方法来解决这两大问题。


摘要

三元组损失是ReID中非常常用的损失, 三元组损失的主要问题在于其计算上非常贵,在大数据集上的训练会受到计算资源的限制。而且数据集中的噪声和离群点会对模型造成比较危险的影响。这篇文章要解决的就是这两个问题,提出了一种新的三元组损失,叫做fast-approximated triplet(FAT)损失,下面来看下这个损失具体是什么样的。

1. 介绍

上面说过,三元组损失的一个问题是计算量的问题,三元组的组合数量和样本数量是3次方的关系,这个数字是非常庞大的。而且,大量的三元组实际上是不重要的,也就是简单样本,对模型的优化其实是没什么用的。如果是随机采样的话,确实可以加速训练,但是容易不收敛,所以现在都会使用各种困难样本挖掘的方法。不过,这些困难样本挖掘的方法会产生采样的偏差,对于离群点会很脆弱。

本文的贡献:

  • 提出了FAT loss,提升了标准的triplet loss的效率。

  • 首次证明了处理了标注噪声可以进一步提升ReID的性能。通过分配soft label可以学到更鲁棒的特征。

  • 在三个数据集上证明了该方法的有效性。

2. 方法

2.1 Fast Approximated Triplet (FAT) Loss

FAT loss的推导如下:

我们首先有下面的三角不等式:

这个式子里,ca和cn是聚类中心。d是距离函数。

对于离群点,上界包含两项,p2s(点到集合)的距离,这个依赖于anchor点,再加上簇的内聚性的惩罚项,定义为最大簇的“半径”。我们最小化这个上界,就得到了FAT loss:

这个损失和完整的triplet loss的性能相当,当时效率高了很多。很明显可以看到,FAT loss的计算量对于数据集的大小是线性复杂度。

归一化的FAT Loss

做为一个margin loss,对于输入尺度是很敏感的。所以,往往会对输入特征进行归一化。这样就得到归一化的FAT loss:

这里,R‘类似于归一化的样本集的半径。实际上,我们发现,加上一个交叉熵loss会对训练更加稳定,这样就得到了混合loss:

簇中心的选择

FAT的簇中心的选择也是很有讲究的,有四个选择:1)簇特征的平均值,2)归一化的簇特征的平均值,3)簇特征的平均值的归一化,4)归一化的簇特征的平均值的归一化。具体如下:

可视化图:

实验表明,第4中方式,归一化的簇特征的平均值的归一化表现的最好。

2.1 噪声标签的蒸馏

ReID中的标签噪声主要3种类型:1)图像被分配到了错误的id类别中,2)图像不属于任何一种id类别,3)同一张图像同时存在多个标签。三元组损失对这些标签噪声是很敏感的。由于FAT loss用的是聚类中心,所以对于噪声点影响不会那么明显。我们以此提出了一种标签蒸馏的teacher-student模型。方法如下:

1、首先,用交叉熵,用分类的方式训练5个epochs,这里包括有噪声的数据。采用这种方式训练的网络对于简单的样本具有较高的置信度。

2、重新训练5个epochs,这次只使用那些置信度高的样本。

3、不断的重复上面的过程。

教师模型训练完了之后,使用教师模型的预测作为soft label来代替之前的hard label,然后使用FAT loss来训练学生模型。只有那些置信度高的样本才会参与计算聚类中心,如果使用了混合损失,soft label也会用作交叉熵的target。

3. 实验结果

FAT loss在几个数据集上的效果:

教师-学生网络的各自的效果:

论文链接:https://arxiv.org/pdf/1912.07863

代码链接:https://github.com/VITA-Group/FAT

或者在公众号后台回复:“FAT”,可下载打包好的论文和代码。

—END—

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧

这篇关于FAT:一种快速的Triplet Loss近似方法,学习更鲁棒的特征表示,并进行有噪声标签的提纯...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080732

相关文章

Spring Security方法级安全控制@PreAuthorize注解的灵活运用小结

《SpringSecurity方法级安全控制@PreAuthorize注解的灵活运用小结》本文将带着大家讲解@PreAuthorize注解的核心原理、SpEL表达式机制,并通过的示例代码演示如... 目录1. 前言2. @PreAuthorize 注解简介3. @PreAuthorize 核心原理解析拦截与

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

CSS去除a标签的下划线的几种方法

《CSS去除a标签的下划线的几种方法》本文给大家分享在CSS中,去除a标签(超链接)的下划线的几种方法,本文给大家介绍的非常详细,感兴趣的朋友一起看看吧... 在 css 中,去除a标签(超链接)的下划线主要有以下几种方法:使用text-decoration属性通用选择器设置:使用a标签选择器,将tex

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.