FAT:一种快速的Triplet Loss近似方法,学习更鲁棒的特征表示,并进行有噪声标签的提纯...

本文主要是介绍FAT:一种快速的Triplet Loss近似方法,学习更鲁棒的特征表示,并进行有噪声标签的提纯...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


导读

Triplet的两大问题,计算复杂度和噪声敏感,看看这篇文章如何用一种对Triple的近似的方法来解决这两大问题。


摘要

三元组损失是ReID中非常常用的损失, 三元组损失的主要问题在于其计算上非常贵,在大数据集上的训练会受到计算资源的限制。而且数据集中的噪声和离群点会对模型造成比较危险的影响。这篇文章要解决的就是这两个问题,提出了一种新的三元组损失,叫做fast-approximated triplet(FAT)损失,下面来看下这个损失具体是什么样的。

1. 介绍

上面说过,三元组损失的一个问题是计算量的问题,三元组的组合数量和样本数量是3次方的关系,这个数字是非常庞大的。而且,大量的三元组实际上是不重要的,也就是简单样本,对模型的优化其实是没什么用的。如果是随机采样的话,确实可以加速训练,但是容易不收敛,所以现在都会使用各种困难样本挖掘的方法。不过,这些困难样本挖掘的方法会产生采样的偏差,对于离群点会很脆弱。

本文的贡献:

  • 提出了FAT loss,提升了标准的triplet loss的效率。

  • 首次证明了处理了标注噪声可以进一步提升ReID的性能。通过分配soft label可以学到更鲁棒的特征。

  • 在三个数据集上证明了该方法的有效性。

2. 方法

2.1 Fast Approximated Triplet (FAT) Loss

FAT loss的推导如下:

我们首先有下面的三角不等式:

这个式子里,ca和cn是聚类中心。d是距离函数。

对于离群点,上界包含两项,p2s(点到集合)的距离,这个依赖于anchor点,再加上簇的内聚性的惩罚项,定义为最大簇的“半径”。我们最小化这个上界,就得到了FAT loss:

这个损失和完整的triplet loss的性能相当,当时效率高了很多。很明显可以看到,FAT loss的计算量对于数据集的大小是线性复杂度。

归一化的FAT Loss

做为一个margin loss,对于输入尺度是很敏感的。所以,往往会对输入特征进行归一化。这样就得到归一化的FAT loss:

这里,R‘类似于归一化的样本集的半径。实际上,我们发现,加上一个交叉熵loss会对训练更加稳定,这样就得到了混合loss:

簇中心的选择

FAT的簇中心的选择也是很有讲究的,有四个选择:1)簇特征的平均值,2)归一化的簇特征的平均值,3)簇特征的平均值的归一化,4)归一化的簇特征的平均值的归一化。具体如下:

可视化图:

实验表明,第4中方式,归一化的簇特征的平均值的归一化表现的最好。

2.1 噪声标签的蒸馏

ReID中的标签噪声主要3种类型:1)图像被分配到了错误的id类别中,2)图像不属于任何一种id类别,3)同一张图像同时存在多个标签。三元组损失对这些标签噪声是很敏感的。由于FAT loss用的是聚类中心,所以对于噪声点影响不会那么明显。我们以此提出了一种标签蒸馏的teacher-student模型。方法如下:

1、首先,用交叉熵,用分类的方式训练5个epochs,这里包括有噪声的数据。采用这种方式训练的网络对于简单的样本具有较高的置信度。

2、重新训练5个epochs,这次只使用那些置信度高的样本。

3、不断的重复上面的过程。

教师模型训练完了之后,使用教师模型的预测作为soft label来代替之前的hard label,然后使用FAT loss来训练学生模型。只有那些置信度高的样本才会参与计算聚类中心,如果使用了混合损失,soft label也会用作交叉熵的target。

3. 实验结果

FAT loss在几个数据集上的效果:

教师-学生网络的各自的效果:

论文链接:https://arxiv.org/pdf/1912.07863

代码链接:https://github.com/VITA-Group/FAT

或者在公众号后台回复:“FAT”,可下载打包好的论文和代码。

—END—

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧

这篇关于FAT:一种快速的Triplet Loss近似方法,学习更鲁棒的特征表示,并进行有噪声标签的提纯...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080732

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::