双目立体视觉 I:标定和校正

2024-06-21 08:18

本文主要是介绍双目立体视觉 I:标定和校正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Ali Yasin Eser

编译:ronghuaiyang

导读

双目立体校正和标定。

大家好!今天我们将讨论什么是立体摄像机,以及我们如何将它用于计算机视觉。通过使用这里的代码:https://github.com/aliyasineser/stereoDepth,我将解释我们如何为立体摄像机校准摄像机并计算视差图。我不会深入数学细节,你可以阅读一些OpenCV文档。

我们能感知深度的原因是我们美丽对齐的眼睛。如果你注意到,当我们用一只眼睛看近处的物体时,我们会看到两种角度的不同。但当你看远处的东西时,比如几公里外的山或建筑,你看不到区别。这些差异在我们的大脑中自动处理,我们可以感知深度!眼睛一个在左一个在右的动物无法感知深度,因为它们没有共同的视角,相反,它们有广角视角。有些动物,比如鸭子,通过摇头或快速奔跑来感知深度。我们不会讨论这个概念,现在,让我们关注像我们的眼睛这样的系统。

简化的立体视觉。你可以看到物体P是如何被两个摄像机观察到的。物体的位置在两个图像中是不同的。

如果两台相机垂直对齐,观察到的物体将在同一垂直坐标上(图像中的同一列),所以我们只能关注x坐标来计算深度,因为近的物体在x轴上会有较大的差值。但为了实现这一目标,我们需要对相机进行校准,以修正镜头畸变。校准后,我们需要对系统进行校正。校正基本上就是两台相机之间的校准。如果我们校准和矫正我们的立体摄像机,两个物体将在相同的y轴上,并且观测点P(x,y)可以在图像的同一行中找到,P1(x1,y)是第一个摄像机,P2(x2,y)是第二个摄像机。从这里开始,像素和深度计算之间的唯一区别就在于此。

左上角图像和右下角图像分别是左/右相机图像,左下角是它们的组合来显示差异,右下角是深度图。

首先,将立体摄像机安装在一个固体物体上(尺子、木头或硬塑料材料等),使校准和校正参数能够正常工作。例如,如果你有Intel Realsense或zed相机,你可以跳过所有的部分,因为Realsense有自动校准功能,zed已经按出厂默认校准。下一步是分别校准两个相机。你可以按照这里:https://medium.com/@aliyasineser/opencv-camera-calibration-e9a48bdd1844进行校正。立体摄像机首先需要单相机校准,因为校正需要这些参数。使用棋盘格图像进行校准,使用至少20张图像以进行良好的计算。

左图和右图的例子。注意拍照的时候要同步,在校正中,即使小的差别也会影响结果。

这些图像会给我们提供摄像机所需的信息。为了更好的校准,你不能移动并获取同步的图像。你可以使用grab和retrieve函数来获得更接近的时间戳。对于拍摄图像,你可以使用这个代码:https://github.com/aliyasineser/stereoDepth/blob/master/getStereoImages.py,对于校准,你可以使用这个代码:https://github.com/aliyasineser/stereoDepth/blob/master/stereo_camera_calibration.py。关于代码:

  1. 立体标定:立体摄像机的摄像机标定。

  2. 立体校正:通过旋转和平移使它们在y轴上对齐,使这些摄像机观察到的每个点都在每个摄像机图像的同一列中。

OpenCV立体标定函数:

ret, K1, D1, K2, D2, R, T, E, F = cv2.stereoCalibrate(objp, leftp, rightp, K1, D1, K2, D2, image_size, criteria, flag)

我们要注意函数中的flags:

  • CV_CALIB_FIX_INTRINSIC: K和D个矩阵是固定的。这是默认标志。如果你校准好你的相机,你可以修正它们,所以你只会得到校正矩阵。

  • CV_CALIB_USE_INTRINSIC_GUESS: K和D个矩阵将被优化。对于这个计算,你应该给出经过良好校准的矩阵,以便(可能)得到更好的结果。

  • CV_CALIB_FIX_PRINCIPAL_POINT: 修复K矩阵中的参考点。

  • CV_CALIB_FIX_FOCAL_LENGTH: 在K矩阵中固定焦距。

  • CV_CALIB_FIX_ASPECT_RATIO: 固定长宽比。

  • CV_CALIB_SAME_FOCAL_LENGTH: 校准焦距,并设置Fx和Fy相同的校准结果。我对这个不熟悉,但我肯定它是特定的立体设置所需要的。

  • CV_CALIB_ZERO_TANGENT_DIST: 去掉畸变。

  • CV_CALIB_FIX_K1, …, CV_CALIB_FIX_K6: 移除K1到K6的畸变。这对实验非常重要。我不熟悉这些背后的数学,但我做的实验帮助了我很多。

结果中的R, T, E, F系数给出了两个相机之间的关系,我们将使用它们进行校正:

R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(K1, D1, K2, D2, image_size, R, T, flags=cv2.CALIB_ZERO_DISPARITY, alpha=0.9)

在这个函数中,我们只有一个标志CALIB_ZERO_DISPARITY,它用于匹配图像之间的y轴。alpha值用于转换后的黑色部分,因为图像会旋转,我们的大小不会改变,所以一些图像会是黑色的,我们的原始图像会小得多。我设置了相机的值。选项是:

  • alpha=-1 -> 让 OpenCV 优化黑色部分。

  • alpha= 0 -> 旋转和切割图像,使没有黑色的部分。这个选项在大多数情况下会严重削减图像,你不会得到一个像样的高质量的图像,但值得一试。

  • alpha= 1 -> 进行变换,但不要切任何东西。

  • alpha=experimental-> 有时候什么都不管用。这意味着你应该试验这些值。在某个特定的alpha值,你可以有一些黑色的部分,但高质量的图像。我为我的相机找到了最好的0.9756,所以不要失去希望:)、S

R矩阵和P矩阵称为旋转矩阵和投影矩阵。R1和P1给出从第一个(左)到第二个(右)摄像机的旋转和位置。R2和P2是从二到一。从视差图中得到深度图需要Q矩阵。包括相机之间的距离,焦距等,用于深度地图的处理。当计算深度值时,不要忘记将在与校准工作相同的单位中获得坐标。有很多参数,所以最好仔细检查。

对于结果,应该去看我们的测试代码:https://github.com/aliyasineser/stereoDepth/blob/master/stereo_depth.py。如果我们阅读主要部分,我们会看到我们使用了畸变校正:

leftMapX, leftMapY = cv2.initUndistortRectifyMap(K1, D1, R1, P1, (width, height), cv2.CV_32FC1)left_rectified = cv2.remap(leftFrame, leftMapX, leftMapY, cv2.INTER_LINEAR, cv2.BORDER_CONSTANT)rightMapX, rightMapY = cv2.initUndistortRectifyMap(K2, D2, R2, P2, (width, height), cv2.CV_32FC1)right_rectified = cv2.remap(rightFrame, rightMapX, rightMapY, cv2.INTER_LINEAR, cv2.BORDER_CONSTANT)

这意味着initUndistortRectifyMap函数可以同时实现图像的畸变校正和校准。对于左相机,我们使用K1(相机矩阵)和D1(失真矩阵)进行畸变校正,使用R1(从左到右旋转)和P1(从左到右投影矩阵)进行校正。在对remap进行变换后,我们将得到修正后的图像。对于右相机,我们会用相同的步骤做一遍,然后第一部分就完成了!总结一下过程:

这就是立体校准和标定。我们将在下一篇博客中讨论视差图的计算!

一些资源:

  • http://zone.ni.com/reference/en-XX/help/372916P-01/nivisionconceptsdita/guid-c9c3535b-faf7-4ade-9166-513a49d1b90a/

  • https://www.google.at/search?q=depth+map&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjlqIq1xsjeAhUkglwKHahhDVIQ_AUIDigB&biw=1536&bih=732#imgrc=o7eiUTU5f3tKpM:

  • https://www.mathworks.com/discovery/stereo-vision.html

  • https://docs.opencv.org/3.0-beta/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

—END—

英文原文:https://py.plainenglish.io/the-depth-i-stereo-calibration-and-rectification-24da7b0fb1e0

请长按或扫描二维码关注本公众号

喜欢的话,请给我个在看吧

这篇关于双目立体视觉 I:标定和校正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080681

相关文章

Java五子棋之坐标校正

上篇针对了Java项目中的解构思维,在这篇内容中我们不妨从整体项目中拆解拿出一个非常重要的五子棋逻辑实现:坐标校正,我们如何使漫无目的鼠标点击变得有序化和可控化呢? 目录 一、从鼠标监听到获取坐标 1.MouseListener和MouseAdapter 2.mousePressed方法 二、坐标校正的具体实现方法 1.关于fillOval方法 2.坐标获取 3.坐标转换 4.坐

如何利用echarts编写立体的柱状图表

1、引入 import * as echarts from 'echarts' 2、创建图标容器 3、调用渲染 <template><div ref="eachrtsBox" style="width: 200px;height: 200px;"></div></template><script>import * as echarts from 'echarts'export d

如何给MySQL设置远程访问?(官方校正版)

在现代数据驱动的世界中,数据库的灵活性和可访问性变得尤为重要。设置MySQL的远程访问不仅仅是为了方便,还为企业和开发者提供了多种优势。无论是在分布式团队协作、跨地域数据管理,还是在系统集成和实时数据访问方面,远程访问都能显著提升效率和生产力。 目录 1. 修改MySQL配置文件 2. 重启MySQL服务 3. 创建远程访问用户 4. 配置防火墙 a. 使用UFW(适用于Ubun

基于感知哈希算法的视觉目标跟踪

偶然看到这三篇博文[1][2][3],提到图片检索网站TinEye和谷歌的相似图片搜索引擎的技术原理。以图搜图搜索引擎的使命是:你上传一张图片,然后他们尽全力帮你把互联网上所有与它相似的图片搜索出来。当然了,这只是他们认为的相似,所以有时候搜索结果也不一定对。事实上,以图搜图三大搜索引擎除了上面的老牌的TinEye和Google外,还有百度上线不算很久的新生儿:百度识图。之前听余凯老师的一个D

动手学深度学习(Pytorch版)代码实践 -计算机视觉-37微调

37微调 import osimport torchimport torchvisionfrom torch import nnimport liliPytorch as lpimport matplotlib.pyplot as pltfrom d2l import torch as d2l# 获取数据集d2l.DATA_HUB['hotdog'] = (d2l.DATA_U

ABB机器人教程:工具载荷与有效载荷数据自动标定操作方法

目录 概述 工具载荷自动标定前的准备工作 进入载荷识别服务例行程序 工具载荷识别与标定操作 有效载荷识别与标定操作要点 4轴码垛类型机器人载荷数据标定说明 概述 在使用ABB机器人前需要正确标定一些关键数据,其中就包含载荷数据。理论上讲,安装在机器人上的所有设备均需标定其载荷数据。如果没有标定或没有准确标定载荷数据,会导致机器人机械结构过载,这样不仅机器人无法发挥其最大能力,而

动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广

6 图片增广 import matplotlib.pyplot as pltimport numpy as npimport torch import torchvisionfrom d2l import torch as d2lfrom torch import nn from PIL import Imageimport liliPytorch as lpfrom tor

《PyTorch计算机视觉实战》:一、二章

目录 第一章:人工神经网络基础 比较人工智能和传统机器学习 人工神经网络(Artificial Neural Network,ANN) 是一种受人类大脑运作方式启发而构建的监督学习算法。神经网络与人类大脑中神经元连接和激活的方式比较类似,神经网络接收输入并通过一个函数传递,导致随后的某些神经元被激活,从而产生输出。 有几种标准的 ANN 架构。通用近似定理认为,总是可以找到一

内容安全复习 8 - 视觉内容伪造与检测

文章目录 研究背景内容伪造方法虚假人脸生成人脸替换属性编辑表情重演跨模态人脸编辑 伪造检测方法眨眼检测交互式人脸活体检测一些了解方法挑战 研究背景 图像内容篡改造成新闻报道的偏颇易导致社会和公共秩序的不安,对公共安全产生不良影响。 造成的影响: 政治抹黑、军事欺骗、恐怖主义、社交媒体涟漪效应、经济犯罪、网络诈骗。 内容伪造方法 分类如下: 接下来对每种方法进行解释。

视觉与运动控制3

运动控制前置准备 运动控制所需要配件 4轴项目为例: PCI运动控制卡(雷赛DMC3800)转接口拓展卡(AC64_to_68)(可选) 电缆线(CABLE68-NR-20)接线盒(雷赛ACC3800)引脚线(25针公头)开关电源(240V1.3A~24V5A)电机+驱动器官网控制软件(雷赛motion) 安装 PCI卡安装至电脑,若需转接口拓展卡,则一并安装电脑开机安装驱动。电缆线连