线性代数|机器学习-P16矩阵A的导数

2024-06-21 05:52

本文主要是介绍线性代数|机器学习-P16矩阵A的导数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 概述

这节课的主题是定义矩阵A是关于时间t的 A ( t ) A(t) A(t),在已知 d A ( t ) d t \frac{\mathrm{d}A(t)}{\mathrm{d}t} dtdA(t)的情况下,求解 d A − 1 ( t ) d t , d λ ( t ) d t , d σ ( t ) d t \frac{\mathrm{d}A^{-1}(t)}{\mathrm{d}t},\frac{\mathrm{d}\lambda(t)}{\mathrm{d}t},\frac{\mathrm{d}\sigma(t)}{\mathrm{d}t} dtdA1(t),dtdλ(t),dtdσ(t)
d A ( t ) d t → d A − 1 ( t ) d t , d λ ( t ) d t , d σ ( t ) d t \begin{equation} \frac{\mathrm{d}A(t)}{\mathrm{d}t}\rightarrow \frac{\mathrm{d}A^{-1}(t)}{\mathrm{d}t},\frac{\mathrm{d}\lambda(t)}{\mathrm{d}t},\frac{\mathrm{d}\sigma(t)}{\mathrm{d}t} \end{equation} dtdA(t)dtdA1(t),dtdλ(t),dtdσ(t)

2. 求 d A − 1 ( t ) d t \frac{\mathrm{d}A^{-1}(t)}{\mathrm{d}t} dtdA1(t)

关于矩阵 A − 1 , B − 1 A^{-1},B^{-1} A1,B1,可以得到如下公式:
B − 1 − A − 1 = B − 1 ( A − B ) A − 1 \begin{equation} B^{-1}-A^{-1}=B^{-1}(A-B)A^{-1} \end{equation} B1A1=B1(AB)A1

  • 我们定义 B = A + Δ A B=A+\Delta A B=A+ΔA,则上述公式变换如下:
    Δ A − 1 = ( A + Δ A ) − 1 ( − Δ A ) A − 1 \begin{equation} \Delta A^{-1}=(A+\Delta A)^{-1}(-\Delta A)A^{-1} \end{equation} ΔA1=(A+ΔA)1(ΔA)A1
  • Δ A → 0 \Delta A \rightarrow 0 ΔA0时, ( A + Δ A ) − 1 = A − 1 (A+\Delta A)^{-1}=A^{-1} (A+ΔA)1=A1,两边同时除以 Δ t \Delta t Δt,则公式整理可得:
    Δ A − 1 Δ t = − A − 1 ( Δ A ) Δ t A − 1 \begin{equation} \frac{\Delta A^{-1}}{\Delta t}=-A^{-1}\frac{(\Delta A)}{\Delta t}A^{-1} \end{equation} ΔtΔA1=A1Δt(ΔA)A1
  • 则可得如下:
    d A − 1 d t = − A − 1 d A d t A − 1 \begin{equation} \frac{\mathrm d A^{-1}}{\mathrm d t}=-A^{-1}\frac{\mathrm d A}{\mathrm d t}A^{-1} \end{equation} dtdA1=A1dtdAA1

3. 求 d λ ( t ) d t \frac{\mathrm{d}\lambda(t)}{\mathrm{d}t} dtdλ(t)

3.1 A 和 A T A^T AT有相同的特征值

求解特征值方程如下,将等式转置可得:
∣ A − λ I ∣ = 0 → ∣ A T − λ I T ∣ = ∣ A T − λ I ∣ = ∣ A − λ I ∣ \begin{equation} |A-\lambda I|=0\rightarrow |A^T-\lambda I^T|=|A^T-\lambda I|=|A-\lambda I| \end{equation} AλI=0ATλIT=ATλI=AλI
所以可得A与 A T A^T AT有相同的特征值,我们定义矩阵A的特征值为 λ \lambda λ时的特征向量为x, A x = λ x Ax=\lambda x Ax=λx,矩阵 A T A^T AT的特征值为 μ \mu μ时的特征向量为y , A T y = μ y A^Ty=\mu y ATy=μy
A x = λ x , A T y = μ y → y T A = μ y T \begin{equation} Ax=\lambda x,A^Ty=\mu y\rightarrow y^TA=\mu y^T \end{equation} Ax=λx,ATy=μyyTA=μyT

  • 等式乘以 y T y^T yT可得:
    y T A x = λ y T x → μ y T x = λ y T x → ( μ − λ ) y T x = 0 \begin{equation} y^TAx=\lambda y^Tx\rightarrow\mu y^Tx=\lambda y^Tx\rightarrow (\mu-\lambda)y^Tx=0 \end{equation} yTAx=λyTxμyTx=λyTx(μλ)yTx=0
  • 为了保证上式对于任意 μ − λ \mu-\lambda μλ成立,只能得到如下
    μ ≠ λ → y T x = 0 \begin{equation} \mu\neq \lambda\rightarrow y^Tx=0 \end{equation} μ=λyTx=0
  • 那当 μ = λ \mu=\lambda μ=λ时, y T x = ? ? ? y^Tx=??? yTx=???呢?

3.2 特征向量单位化

我们知道,对于矩阵A来说,我们能够得到如下公式
A [ x 1 x 2 ⋯ x n ] = [ x 1 x 2 ⋯ x n ] [ λ 1 λ 2 ⋱ λ n ] → A = X Λ X − 1 \begin{equation} A\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix}=\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix}\begin{bmatrix}\lambda_1\\\\&\lambda_2\\\\&&\ddots\\\\&&&\lambda_n\end{bmatrix}\rightarrow A=X\Lambda X^{-1} \end{equation} A[x1x2xn]=[x1x2xn] λ1λ2λn A=XΛX1

  • 那么我们可得 A 2 A^2 A2为:
    A 2 = X Λ X − 1 X Λ X − 1 \begin{equation} A^2=X\Lambda X^{-1}X\Lambda X^{-1} \end{equation} A2=XΛX1XΛX1
  • 如果X列向量不单位化,假设 x i T x i = c i x_i^Tx_i=c_i xiTxi=ci,那么可得:
    X T X = [ x 1 T x 2 T ⋮ x n T ] [ x 1 x 2 ⋯ x n ] = [ c 1 c 2 ⋱ c n ] \begin{equation} X^TX=\begin{bmatrix}x_1^T\\\\x_2^T\\\\\vdots\\\\x_n^T\end{bmatrix}\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix}=\begin{bmatrix}c_1\\\\&c_2\\\\&&\ddots\\\\&&&c_n\end{bmatrix} \end{equation} XTX= x1Tx2TxnT [x1x2xn]= c1c2cn
  • 那么这样在求 A 2 A^2 A2时,就无法得到如下:
    A 2 ≠ X Λ 2 X − 1 \begin{equation} A^2\neq X\Lambda^2 X^{-1} \end{equation} A2=XΛ2X1
  • 所以为了能够方便计算,我们一般会单位化向量 x i x_i xi,得到如下:
    X T X = I , X − 1 = X T , x T x = 1 , A = X Λ X T , A x = λ x \begin{equation} X^TX=I,X^{-1}=X^T,x^Tx=1,A=X\Lambda X^T,Ax=\lambda x \end{equation} XTX=I,X1=XT,xTx=1,A=XΛXT,Ax=λx
  • 同理可得关于 A T A^T AT表示如下:
    y T A = λ y T , A = Y Λ Y T \begin{equation} y^TA=\lambda y^T,A=Y\Lambda Y^T \end{equation} yTA=λyT,A=YΛYT
  • 那么 A 2 A^2 A2 可得如下:
    A 2 = X Λ X T Y Λ Y T \begin{equation} A^2=X\Lambda X^TY\Lambda Y^T \end{equation} A2=XΛXTYΛYT
  • 为了要得到 A 2 = X Λ 2 Y T A^2=X\Lambda^2 Y^T A2=XΛ2YT,我们希望得到 X T Y = I X^TY=I XTY=I
    X T Y = Y T X = I \begin{equation} X^TY=Y^TX=I \end{equation} XTY=YTX=I
  • 可得如下:
    μ = λ → y T x = 1 , μ ≠ λ → y T x = 0 \begin{equation} \mu=\lambda\rightarrow y^Tx=1,\mu\ne\lambda\rightarrow y^Tx=0 \end{equation} μ=λyTx=1,μ=λyTx=0

3.3 求 λ ( t ) \lambda(t) λ(t)

关于矩阵A可得如下:
A ( t ) x ( t ) = λ ( t ) x ( t ) , y T ( t ) A ( t ) = λ ( t ) y T ( t ) , y T ( t ) x ( t ) = 1 \begin{equation} A(t)x(t)=\lambda(t)x(t),y^T(t)A(t)=\lambda(t)y^T(t),y^T(t)x(t)=1 \end{equation} A(t)x(t)=λ(t)x(t),yT(t)A(t)=λ(t)yT(t),yT(t)x(t)=1

  • 等式两边乘以 y T ( t ) y^T(t) yT(t)可得:
    y T ( t ) A ( t ) x ( t ) = λ ( t ) y T ( t ) x ( t ) = λ ( t ) \begin{equation} y^T(t)A(t)x(t)=\lambda(t)y^T(t)x(t)=\lambda(t) \end{equation} yT(t)A(t)x(t)=λ(t)yT(t)x(t)=λ(t)
  • 整理可得如下:
    λ ( t ) = y T ( t ) A ( t ) x ( t ) \begin{equation} \lambda(t)=y^T(t)A(t)x(t) \end{equation} λ(t)=yT(t)A(t)x(t)
  • 两边关于t求导可得:
    d λ ( t ) d t = d y T ( t ) d t A ( t ) x ( t ) + y T ( t ) d A ( t ) d t x ( t ) + y T ( t ) A ( t ) d x ( t ) d t \begin{equation} \frac{\mathrm{d}\lambda(t)}{\mathrm{d}t}=\frac{\mathrm{d}y^T(t)}{\mathrm{d}t}A(t)x(t)+y^T(t)\frac{\mathrm{d}A(t)}{\mathrm{d}t}x(t)+y^T(t)A(t)\frac{\mathrm{d}x(t)}{\mathrm{d}t} \end{equation} dtdλ(t)=dtdyT(t)A(t)x(t)+yT(t)dtdA(t)x(t)+yT(t)A(t)dtdx(t)
  • 由公式可得 A ( t ) x ( t ) = λ ( t ) x ( t ) , y T ( t ) A ( t ) = λ ( t ) y T ( t ) A(t)x(t)=\lambda(t)x(t),y^T(t)A(t)=\lambda(t)y^T(t) A(t)x(t)=λ(t)x(t),yT(t)A(t)=λ(t)yT(t)整理后可得:
    d λ ( t ) d t = d y T ( t ) d t λ ( t ) x ( t ) + y T ( t ) d A ( t ) d t x ( t ) + λ ( t ) y T ( t ) d x ( t ) d t \begin{equation} \frac{\mathrm{d}\lambda(t)}{\mathrm{d}t}=\frac{\mathrm{d}y^T(t)}{\mathrm{d}t}\lambda(t)x(t)+y^T(t)\frac{\mathrm{d}A(t)}{\mathrm{d}t}x(t)+\lambda(t)y^T(t)\frac{\mathrm{d}x(t)}{\mathrm{d}t} \end{equation} dtdλ(t)=dtdyT(t)λ(t)x(t)+yT(t)dtdA(t)x(t)+λ(t)yT(t)dtdx(t)
  • 第1,3项合并整理可得:
    d λ ( t ) d t = λ ( t ) [ d y T ( t ) d t x ( t ) + y T ( t ) d x ( t ) d t ] + y T ( t ) d A ( t ) d t x ( t ) \begin{equation} \frac{\mathrm{d}\lambda(t)}{\mathrm{d}t}=\lambda(t)[\frac{\mathrm{d}y^T(t)}{\mathrm{d}t}x(t)+y^T(t)\frac{\mathrm{d}x(t)}{\mathrm{d}t}]+y^T(t)\frac{\mathrm{d}A(t)}{\mathrm{d}t}x(t) \end{equation} dtdλ(t)=λ(t)[dtdyT(t)x(t)+yT(t)dtdx(t)]+yT(t)dtdA(t)x(t)
  • 我们知道 y T ( t ) x ( t ) = 1 y^T(t)x(t)=1 yT(t)x(t)=1,两边求导可得:
    d y T ( t ) d t x ( t ) + y T ( t ) d x ( t ) d t = 0 \begin{equation} \frac{\mathrm{d}y^T(t)}{\mathrm{d}t}x(t)+y^T(t)\frac{\mathrm{d}x(t)}{\mathrm{d}t}=0 \end{equation} dtdyT(t)x(t)+yT(t)dtdx(t)=0
  • 代入后可得:
    d λ ( t ) d t = y T ( t ) d A ( t ) d t x ( t ) \begin{equation} \frac{\mathrm{d}\lambda(t)}{\mathrm{d}t}=y^T(t)\frac{\mathrm{d}A(t)}{\mathrm{d}t}x(t) \end{equation} dtdλ(t)=yT(t)dtdA(t)x(t)

这篇关于线性代数|机器学习-P16矩阵A的导数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080378

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa