Meta悄咪咪的发布多款AI新模型

2024-06-20 20:20
文章标签 meta ai 模型 发布 多款 咪咪

本文主要是介绍Meta悄咪咪的发布多款AI新模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调或者LLM背后的基础模型重新阅读。而最新科技(Mamba,xLSTM,KAN)则提供了大模型领域最新技术跟踪。若对于具身智能感兴趣的请移步具身智能专栏。技术宅麻烦死磕AI架构设计。

Meta 的基础 AI 研究 (FAIR) 团队发布了一些最新的AI模型,包括可以处理和生成多模态文本和图像的 Chameleon、Multi-token prediction模型以及文本到音乐模型JASCO。

Chameleon于之前介绍过,可以点击链接查看。与大多数的大型语言模型不同,多模态变色龙可以处理文本和图像的任意组合作为输入,也可以处理文本和图像的任意组合作为输出。Meta 在非商业许可下发布 7B 和 34B 变体,仅用于研究目的。

在Chameleon之前不久,Meta还展示了一种开发更好、更快的大型语言模型的新方法:multi-token prediction。该团队能够证明,在训练 AI 语言模型时,多Token预测可以提高性能、连贯性和推理能力。Meta 正在发布用于在非商业许可下完成代码的预训练模型,仅用于研究目的。

multi-token prediction在训练过程中,该模型通过共享中继和 4 个专用输出头同时预测 4 个未来令牌。在推理过程中,只使用下一个标记输出头。可选地,其他三个磁头可用于加快推理时间。

在推理过程中,所提出的架构的最基本用途是使用下一个标记预测头,同时丢弃所有其他标记。但是,可以利用额外的输出头来加速从下一个标记预测头进行解码,这里主要使用自推测解码方法,例如分块并行解码 (Stern,2018) 等算法。

举个简单的例子,假如正确的序列是12345ABC,下图显示,multi-token prediction损失函数为结果Token分配了更高的隐式权重,其中除“5 → A”之外的所有转换都易于预测。

由于“5 → A”会比较困难过度且难以预测,因此通过其相关“3→ A”、...、“5→ C”这种多头的校正将会更加顺利。

通过multi-token prediction,与传统的模型相比,13B参数模型在 HumanEval 上解决的问题 12%,在MBPP上多解决 17%。另一个好处是,使用 4个标记预测训练的模型在推理时速度提高了3倍,即使批量大小也是如此。

除此之外还发布了文本到音乐的模型JASCO。除了文本之外,它还接受各种输入,例如和弦或节拍,以改善对生成的音乐输出的控制。

借助AudioSeal,Meta发布了一种音频水印技术,即使在较长的音频片段中也可以识别和标记 AI生成的语音。与其他方法相比,据说该方法的速度要快 485 倍。AudioSeal 根据商业许可发布。

这篇关于Meta悄咪咪的发布多款AI新模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1079157

相关文章

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

新特性抢先看! Ubuntu 25.04 Beta 发布:Linux 6.14 内核

《新特性抢先看!Ubuntu25.04Beta发布:Linux6.14内核》Canonical公司近日发布了Ubuntu25.04Beta版,这一版本被赋予了一个活泼的代号——“Plu... Canonical 昨日(3 月 27 日)放出了 Beta 版 Ubuntu 25.04 系统镜像,代号“Pluc

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Nginx实现前端灰度发布

《Nginx实现前端灰度发布》灰度发布是一种重要的策略,它允许我们在不影响所有用户的情况下,逐步推出新功能或更新,通过灰度发布,我们可以测试新版本的稳定性和性能,下面就来介绍一下前端灰度发布的使用,感... 目录前言一、基于权重的流量分配二、基于 Cookie 的分流三、基于请求头的分流四、基于请求参数的分

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo