labelme使用笔记:目标检测数据集标注和语义分割数据集批量生成

本文主要是介绍labelme使用笔记:目标检测数据集标注和语义分割数据集批量生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI应用开发相关目录

本专栏包括AI应用开发相关内容分享,包括不限于AI算法部署实施细节、AI应用后端分析服务相关概念及开发技巧、AI应用后端应用服务相关概念及开发技巧、AI应用前端实现路径及开发技巧
适用于具备一定算法及Python使用基础的人群

  1. AI应用开发流程概述
  2. Visual Studio Code及Remote Development插件远程开发
  3. git开源项目的一些问题及镜像解决办法
  4. python实现UDP报文通信
  5. python实现日志生成及定期清理
  6. Linux终端命令Screen常见用法
  7. python实现redis数据存储
  8. python字符串转字典
  9. python实现文本向量化及文本相似度计算
  10. python对MySQL数据的常见使用
  11. 一文总结python的异常数据处理示例
  12. 基于selenium和bs4的通用数据采集技术(附代码)
  13. 基于python的知识图谱技术
  14. 一文理清python学习路径
  15. Linux、Git、Docker常用指令
  16. linux和windows系统下的python环境迁移
  17. linux下python服务定时(自)启动
  18. windows下基于python语言的TTS开发
  19. python opencv实现图像分割
  20. python使用API实现word文档翻译
  21. yolo-world:”目标检测届大模型“
  22. 爬虫进阶:多线程爬虫
  23. python使用modbustcp协议与PLC进行简单通信
  24. ChatTTS:开源语音合成项目
  25. sqlite性能考量及使用(附可视化操作软件)
  26. 拓扑数据的关键点识别算法
  27. python脚本将视频抽帧为图像数据集
  28. 图文RAG组件:360LayoutAnalysis中文论文及研报图像分析
  29. Ubuntu服务器的GitLab部署
  30. 无痛接入图像生成风格迁移能力:GAN生成对抗网络
  31. 一文理清OCR的前世今生
  32. labelme使用笔记

文章目录

  • AI应用开发相关目录
  • 简介
  • 部署
  • 使用


简介

Labelme 是一个开源的数据标注工具,它能够帮助用户为图像、视频等数据添加标签,以供机器学习模型训练使用。Labelme 支持多种类型的标注,包括目标检测、分割、分类等任务,用户可以通过绘制矩形框、多边形、圆形等图形来标注对象,也可以进行像素级的分割标注。

Labelme 的特点包括:

跨平台:Labelme 支持多个操作系统,包括 Windows、macOS 和 Linux。
易于使用:它有一个直观的用户界面,方便用户进行标注工作。
灵活性:支持多种格式的输出,包括常见的 PASCAL VOC、COCO 等格式,方便与其他机器学习框架集成。
可扩展性:Labelme 支持插件,用户可以根据自己的需求定制或扩展功能。
社区支持:作为一个开源项目,Labelme 拥有活跃的社区,用户可以获取支持或分享经验。
Labelme 在学术界和工业界都有广泛的应用,特别是在计算机视觉领域。

部署

conda create -n labelme python=3.6
conda activate labelme
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple labelme

使用

在这里插入图片描述
如上图所示,在labelme指定虚拟环境下运行labelme指令。
在这里插入图片描述
可以选择Open打开一张图片对图片进行标注;
Open Dir选择图片保存的路径,即可标注多张图片。其中,保存ison到指定文件夹:File->Change Output Dir ->选择指定文件夹路径;
create polygons可以进行描边界点,通用还有矩形框等标注方式。
在这里插入图片描述
框住或标注图形后输入对应label即可。

Ctrl+S:保存标注
D:下一张图片
S:上一张图片

一般的目标检测、分类等任务到此结束了,可以使用标注数据集进行算法模型训练。
但对于语义分割等任务还需根据标注生成语义图像。
cd 到指定存储生成的json文件的地址。
运行如下指令即可获得目标数据。

labelme_json_to_dataset  <文件名>.json

在这里插入图片描述
json中包含png原图、yaml文件、png语义图像。

当然这只是一张图像而已,一张一张生成太麻烦,可通过如下代码批量生成:

# labelme版本:3.16.2
import os
import subprocess# JSON文件所在目录,一定要确保json文件与原图像在同一文件夹
json_dir = r"img2\labelme_jsons"# 遍历JSON文件
for json_file in os.listdir(json_dir):if json_file.endswith('.json'):# 构建labelme转换命令json_path = os.path.join(json_dir, json_file)cmd = 'labelme_json_to_dataset ' + json_path# 执行命令subprocess.run(cmd.split())

这篇关于labelme使用笔记:目标检测数据集标注和语义分割数据集批量生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078469

相关文章

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法