本文主要是介绍Tensorflow入门实战 T05-运动鞋识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
一、完整代码
二、训练过程
(1)打印2行10列的数据。
(2)查看数据集中的一张图片
(3)训练过程(训练50个epoch)
(4)训练结果的精确度
三、遇到的问题
- 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
这篇博客的主要内容是,关于运动鞋的识别。
运动鞋数据集包含训练集和测试集,共578张。
一、完整代码
from tensorflow import keras
from keras import layers, models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] # 如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) # 设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0], "GPU")# 导入数据集
data_dir = "/Users/MsLiang/Documents/mySelf_project/pythonProject_pytorch/learn_demo/P_model/p05_sport/sport_data"
data_dir = pathlib.Path(data_dir) # 打印文件夹目录
image_count = len(list(data_dir.glob('*/*/*.jpg')))
print("图片总数为:",image_count)
roses = list(data_dir.glob('train/nike/*.jpg'))
result = PIL.Image.open(str(roses[0]))
# result.show()# 数据预处理
batch_size = 32
img_height = 224
img_width = 224"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_dir = str(data_dir) + "/train"
train_ds = tf.keras.preprocessing.image_dataset_from_directory(train_dir,seed=123,image_size=(img_height, img_width),batch_size=batch_size)"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
test_dir = str(data_dir) + "/test/"
val_ds = tf.keras.preprocessing.image_dataset_from_directory(test_dir,seed=123,image_size=(img_height, img_width),batch_size=batch_size)class_names = train_ds.class_names
print(class_names) # 打印结果: ['adidas', 'nike']# 可视化数据
plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")
plt.show()# 检查数据
for image_batch, labels_batch in train_ds:print(image_batch.shape) # (32, 224, 224, 3)print(labels_batch.shape) # (32,)break# 配置数据集
AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)# 搭建神经网络
"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""model = models.Sequential([keras.layers.experimental.preprocessing.Rescaling(1. / 255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2,卷积核3*3layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样layers.Dropout(0.3),layers.Conv2D(64, (3, 3), activation='relu'), # 卷积层3,卷积核3*3layers.Dropout(0.3),layers.Flatten(), # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取layers.Dense(len(class_names)) # 输出层,输出预期结果
])# model.summary() # 打印网络结构# 设置动态学习率
# 设置初始学习率
initial_learning_rate = 0.1lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate,decay_steps=10, # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.92, # lr经过一次衰减就会变成 decay_rate*lrstaircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)model.compile(optimizer=optimizer,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStoppingepochs = 50# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=1,save_best_only=True,save_weights_only=True)# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy',min_delta=0.001,patience=20,verbose=1)# 模型训练
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer, earlystopper])# 模型评估图
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(len(loss))plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()# 指定图片进行预测
# 加载效果最好的模型权重
model.load_weights('best_model.h5')from PIL import Image
import numpy as np# img = Image.open("./45-data/Monkeypox/M06_01_04.jpg") # 这里选择你需要预测的图片
img = Image.open(str(data_dir) + "/test/nike/1.jpg") # 这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])img_array = tf.expand_dims(image, 0) # /255.0 # 记得做归一化处理(与训练集处理方式保持一致)predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])
二、训练过程
(1)打印2行10列的数据。
(2)查看数据集中的一张图片
(3)训练过程(训练50个epoch)
模型早听了。
(4)训练结果的精确度
三、遇到的问题
在进行字符串拼接的时候,出现unsupported operand type(s) for +: 'PosixPath' and 'str'
查了下相关资料,添加str( )就可以。
原因:因为前面的data_dir 是经过pathlib.Path() 处理的。
添加str( ) 完美解决。
这篇关于Tensorflow入门实战 T05-运动鞋识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!