用深层神经网络识别猫咪图片:吴恩达Course1-神经网络与深度学习-week3week4作业

本文主要是介绍用深层神经网络识别猫咪图片:吴恩达Course1-神经网络与深度学习-week3week4作业,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码有参考吴恩达老师的源代码,神经网络的图片为转载,图片来源见水印

以下文件的【下载地址】,提取码:dv8a

所有文件存放位置
C:.
│  dnn_utils.py
│  building deep neural network:step by step.py
│  lr_utils.py
│  testCases.py
│
├─datasetstest_catvnoncat.h5test_image1.pngtest_image2.pngtrain_catvnoncat.h5

一些要点

神经网络的层数:指隐藏层+输出层的层数
二层神经网络:有一个输入层、一个隐藏层、一个输出层的神经网络
L层神经网络:有一个输入层、L-1个隐藏层、第L层为输出层的神经网络

——假如对于每个隐藏层,我们都使用[线性传播+同一非线性函数激活]的方式,则构建L层神经网络,无非是将二层神经网络对隐藏层的运算,重复L-1次

深层网络的参数初始化方式不同于二层网络,网络层次越高,越容易产生梯度消失/梯度爆炸现象,这里对深层网络使用Xaiver初始化(在网上看到很多同学的cost卡在0.64降不下去就是这个坑)


来自大佬的形象表达


深层网络的实现步骤

参数初始化-> [实现前向线性传播 -> 实现前向线性激活 -> 实现完整的前向传播] -> 计算成本 -> [实现反向线性传播 -> 实现反向线性激活 -> 实现完整的反向传播] -> 参数更新

这里会对比二层网络和深层网络的测试集准度,使用深层网络对本地图片进行识别


导入库

import numpy as np
from matplotlib import pyplot as plt
import testCases
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
import lr_utils
# 测试本地图片时使用
import imageio
import cv2

设置随机种子并初始化

np.random.seed(1)
# 初始化[二层神经网络]的参数
def initialize_parameters(n_x, n_h, n_y):""":param n_x: x的特征数量:param n_h: 隐藏层节点数量:param n_y: 输出层的特征数量"""W1 = np.random.randn(n_h, n_x)*0.01b1 = np.zeros(shape=(n_h, 1))W2 = np.random.randn(n_y, n_h)*0.01b2 = np.zeros(shape=(n_y, 1))parameters = {'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}return parameters
# 初始化[深层神经网络]的参数
def initialize_parameters_deep(layer_dims):""":param layer_dims: 列表,从输入层至输出层,每层的节点数量"""parameters = {}L = len(layer_dims) - 1                         # 输出层的下标for l in range(1, L+1):# 使用Xaiver初始化,防止梯度消失或爆炸parameters['W'+str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])/np.sqrt(layer_dims[l - 1])parameters['b'+str(l)] = np.zeros(shape=(layer_dims[l], 1))return parameters

前向传播

# 前向传播中的线性传播
def linear_forward(A_prev, W, b):""":param A_prev: 上一层传递到本层的A:param W: 本层的权重矩阵:param b: 本层的偏置项:return: 本层计算的Z"""Z = np.dot(W, A_prev) + bcache = (A_prev, W, b)assert(Z.shape==(W.shape[0], A_prev.shape[1]))return Z, cache
# 前向传播中的线性激活
def linear_and_activation_forward(A_prev, W, b, activation='relu'):""":param activation: 字符串,激活函数名称"""Z, linear_cache = linear_forward(A_prev, W, b)# 按激活函数执行激活步骤if activation == 'sigmoid':A, activation_cache = sigmoid(Z)            # 缓存的是Zelif activation == 'relu':A, activation_cache = relu(Z)assert(A.shape==Z.shape)cache = (linear_cache, activation_cache)return A, cache
# 完整的前向传播
def L_model_forward(X, parameters):caches = []A =<

这篇关于用深层神经网络识别猫咪图片:吴恩达Course1-神经网络与深度学习-week3week4作业的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075202

相关文章

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与

基于C#实现将图片转换为PDF文档

《基于C#实现将图片转换为PDF文档》将图片(JPG、PNG)转换为PDF文件可以帮助我们更好地保存和分享图片,所以本文将介绍如何使用C#将JPG/PNG图片转换为PDF文档,需要的可以参考下... 目录介绍C# 将单张图片转换为PDF文档C# 将多张图片转换到一个PDF文档介绍将图片(JPG、PNG)转

Qt QWidget实现图片旋转动画

《QtQWidget实现图片旋转动画》这篇文章主要为大家详细介绍了如何使用了Qt和QWidget实现图片旋转动画效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、效果展示二、源码分享本例程通过QGraphicsView实现svg格式图片旋转。.hpjavascript

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用