Paddleocr数据增强调用逻辑

2024-06-19 09:04

本文主要是介绍Paddleocr数据增强调用逻辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据增强调用逻辑

以在ppocr/data/simple_dataset.py为例:

get_ext_data通过self.ops[:self.ext_op_transform_idx]获取配置文件中数据增强

 self.ops在def __init__(self, config, mode, logger, seed=None):中通过解析配置文件中'transforms'内容获取数据增强操作:

self.ops = create_operators(dataset_config['transforms'], global_config)

 然后调用 data = transform(data, load_data_ops)实现数据增强。

 def get_ext_data(self):ext_data_num = 0for op in self.ops:if hasattr(op, 'ext_data_num'):ext_data_num = getattr(op, 'ext_data_num')breakload_data_ops = self.ops[:self.ext_op_transform_idx]ext_data = []while len(ext_data) < ext_data_num:file_idx = self.data_idx_order_list[np.random.randint(self.__len__())]data_line = self.data_lines[file_idx]data_line = data_line.decode('utf-8')substr = data_line.strip("\n").split(self.delimiter)file_name = substr[0]file_name = self._try_parse_filename_list(file_name)label = substr[1]img_path = os.path.join(self.data_dir, file_name)data = {'img_path': img_path, 'label': label}if not os.path.exists(img_path):continuewith open(data['img_path'], 'rb') as f:img = f.read()data['image'] = imgdata = transform(data, load_data_ops)if data is None:continueif 'polys' in data.keys():if data['polys'].shape[1] != 4:continueext_data.append(data)return ext_data

 

数据增强实现的细节:

代码来自ppocr/data/imaug/__init__.py

1、trainsform函数将数据增强数组逐个对数据输出数据列表

def transform(data, ops=None):""" transform """if ops is None:ops = []for op in ops:data = op(data)if data is None:return Nonereturn data

op(data)为什么能进行数据增强:

 每一个op是eval(op_name)(**param),eval() 函数将字符串 expression 解析为 Python 表达式,并在指定的命名空间中执行它。

def create_operators(op_param_list, global_config=None):"""create operators based on the configArgs:params(list): a dict list, used to create some operators"""assert isinstance(op_param_list, list), ('operator config should be a list')ops = []for operator in op_param_list:assert isinstance(operator,dict) and len(operator) == 1, "yaml format error"op_name = list(operator)[0]param = {} if operator[op_name] is None else operator[op_name]if global_config is not None:param.update(global_config)op = eval(op_name)(**param)ops.append(op)return ops

例如配置文件中的:

CopyPaste: null

通过ppocr/data/imaug/__init__.py,eval()可以调用CopyPaste实现数据增强

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literalsfrom .iaa_augment import IaaAugment
from .make_border_map import MakeBorderMap
from .make_shrink_map import MakeShrinkMap
from .random_crop_data import EastRandomCropData, RandomCropImgMask
from .make_pse_gt import MakePseGtfrom .rec_img_aug import BaseDataAugmentation, RecAug, RecConAug, RecResizeImg, ClsResizeImg, \SRNRecResizeImg, GrayRecResizeImg, SARRecResizeImg, PRENResizeImg, \ABINetRecResizeImg, SVTRRecResizeImg, ABINetRecAug, VLRecResizeImg, SPINRecResizeImg, RobustScannerRecResizeImg, \RFLRecResizeImg, SVTRRecAug, ParseQRecAug
from .ssl_img_aug import SSLRotateResize
from .randaugment import RandAugment
from .copy_paste import CopyPaste
from .ColorJitter import ColorJitter
from .operators import *
from .label_ops import *from .east_process import *
from .sast_process import *
from .pg_process import *
from .table_ops import *from .vqa import *from .fce_aug import *
from .fce_targets import FCENetTargets
from .ct_process import *
from .drrg_targets import DRRGTargets

这篇关于Paddleocr数据增强调用逻辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074590

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav