本文主要是介绍三种方式实现人车流统计(yolov5+opencv+deepsort+bytetrack+iou),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、运行环境
1、项目运行环境如下
2、CPU配置
3、GPU配置
如果没有GPU yolov5目标检测时间会比较久
二、编程语言与使用库版本
项目编程语言使用c++,使用的第三方库,onnxruntime-linux-x64-1.12.1,opencv-4.6.0
opencv 官方地址Releases - OpenCV
opencv github地址https://github.com/opencv/opencv/tree/4.10.0
onnxruntime 官方地址https://onnxruntime.ai/
onnxruntime github 地址GitHub - microsoft/onnxruntime: ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
三、 检测模型
1、项目使用yolov5目标检测模型
yolov5s.pt模型下载 ONNX > CoreML > TFLite">GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
2、使用命令 转换格式
python export.py --weights yolov5s.pt --include torchscript onnx
3、 使用feature.onnx 为特征提取模型
四、编译脚本
1、项目使用cmake 编写
创建文件CMakeLists.txt
cmake_minimum_required(VERSION 3.5)add_definitions(-DPROJECT_PATH="${CMAKE_SOURCE_DIR}") project(DeepSORT LANGUAGES CXX)set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)set(ONNXRUNTIME_DIR ${CMAKE_SOURCE_DIR}/lib/onnxruntime-linux-x64-1.12.1)set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/lib/opencv-4.6.0/install/lib/cmake/opencv4) # 填入OpenCVConfig.cmakeinclude_directories("${ONNXRUNTIME_DIR}/include")find_package(OpenCV 4 REQUIRED )#message(STATUS "OpenCV_INCLUDE_DIRS: ${OpenCV_INCLUDE_DIRS}") include_directories(${OpenCV_INCLUDE_DIRS}${CMAKE_SOURCE_DIR}/tracker/deepsort/include${CMAKE_SOURCE_DIR}/tracker/bytetrack/include${CMAKE_SOURCE_DIR}/detector/YOLOv5/include${CMAKE_SOURCE_DIR}/include/eigen3${CMAKE_SOURCE_DIR}/tracker/com/include${CMAKE_SOURCE_DIR}/tracker/iou/include)add_executable(DeepSORTdetector/YOLOv5/src/YOLOv5Detector.cpptracker/deepsort/src/Feature
这篇关于三种方式实现人车流统计(yolov5+opencv+deepsort+bytetrack+iou)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!