实现ROS中两个里程计数据的转换到同一坐标系下

2024-06-19 02:44

本文主要是介绍实现ROS中两个里程计数据的转换到同一坐标系下,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在多传感器融合的场景中,不同传感器可能会提供不同的位置信息。这段代码的目标是将来自两个不同来源的里程计数据转换到同一个参考坐标系(在这里,选择 odom0 的坐标系作为参考)下进行对齐,以便于后续的融合和处理。

核心步骤解析

  1. 读取和订阅里程计数据:

    • 代码首先从ROS参数服务器读取里程计数据的订阅话题名称。
    • 然后,订阅来自两个不同来源的里程计数据,并通过回调函数来更新全局变量 odom0odom1
  2. 计算修正变换:

    • 当第一次接收到 odom0odom1 数据时,计算一个初始的修正变换 transform_correction
    • 这个修正变换用于将 odom1 的数据转换到 odom0 的坐标系下。
  3. 应用修正变换:

    • 对于后续接收到的 odom1 数据,代码会应用这个修正变换,将 odom1 的姿态和位置转换到 odom0 的坐标系中。
    • 转换后的数据会被发布到带有后缀的修正话题上。

详细的代码注释

下面是原代码,加上了更详细的中文注释,帮助理解每一步的目的和操作:

#include <ros/ros.h>
#include <tf/transform_datatypes.h>
#include <tf/transform_broadcaster.h>
#include "nav_msgs/Odometry.h"// 定义全局变量来存储里程计消息
nav_msgs::Odometry odom0;
nav_msgs::Odometry odom1;
bool has_new_odom0_received = false;
bool has_new_odom1_received = false;// odom0的回调函数,当接收到odom0的里程计数据时调用
void odometry0_callback(const nav_msgs::Odometry::ConstPtr& odom_msg)
{odom0 = *odom_msg; // 更新全局变量odom0if (!has_new_odom0_received) has_new_odom0_received = true; // 标记为已接收新数据
}// odom1的回调函数,当接收到odom1的里程计数据时调用
void odometry1_callback(const nav_msgs::Odometry::ConstPtr& odom_msg)
{odom1 = *odom_msg; // 更新全局变量odom1if (!has_new_odom1_received) has_new_odom1_received = true; // 标记为已接收新数据
}int main(int argc, char *argv[])
{ros::init(argc, argv, "odometry_fusion_correction"); // 初始化ROS节点ros::NodeHandle n("~"); // 创建私有节点句柄// 从参数服务器获取里程计话题名称和修正话题的后缀std::string odom0_topic = "/odom0";n.getParam("odom0_topic", odom0_topic);std::string odom1_topic = "/odom1";n.getParam("odom1_topic", odom1_topic);std::string correction_suffix = "/corrected";n.getParam("correction_suffix", correction_suffix);// 订阅odom0和odom1话题ros::Subscriber sub_0 = n.subscribe(odom0_topic, 1, odometry0_callback);ros::Subscriber sub_1 = n.subscribe(odom1_topic, 1, odometry1_callback);// 创建修正后的odom0和odom1话题的发布者ros::Publisher pub_0 = n.advertise<nav_msgs::Odometry>(odom0_topic + correction_suffix, 1);ros::Publisher pub_1 = n.advertise<nav_msgs::Odometry>(odom1_topic + correction_suffix, 1);// 从参数服务器获取里程计和子坐标系的名称std::string odom_frame_id = "odom";n.getParam("odom_frame_id", odom_frame_id);std::string child_frame_id = "base_link";n.getParam("child_frame_id", child_frame_id);// 获取协方差的对角线值,用于里程计的姿态不确定性float odom0_covariance_diag_value = -1;n.getParam("odom0_covariance_diag_value", odom0_covariance_diag_value);float odom1_covariance_diag_value = -1;n.getParam("odom1_covariance_diag_value", odom1_covariance_diag_value);bool initialization_done = false; // 初始化标志ros::Rate loop_rate(10); // 循环频率设为10Hztf::TransformBroadcaster br; // 创建TF广播器tf::Transform transform_correction; // 修正变换while (ros::ok()){nav_msgs::Odometry odom_corrected; // 用于存储修正后的里程计消息// 当接收到足够的数据后,计算初始的修正变换if (!initialization_done && has_new_odom0_received && has_new_odom1_received){// 将odom0的四元数消息转换为TF四元数tf::Quaternion odom0_orientation;tf::quaternionMsgToTF(odom0.pose.pose.orientation, odom0_orientation);// 基于odom0的姿态和位置,计算修正变换transform_correction = tf::Transform(odom0_orientation, tf::Vector3(odom0.pose.pose.position.x, odom0.pose.pose.position.y, odom0.pose.pose.position.z));initialization_done = true; // 设置初始化完成标志}if (initialization_done){if (has_new_odom1_received){// 将odom1的四元数消息转换为TF四元数tf::Quaternion odom1_orientation;tf::quaternionMsgToTF(odom1.pose.pose.orientation, odom1_orientation);// 基于odom1的姿态和位置,构造TF变换对象tf::Transform odom1_transform(odom1_orientation, tf::Vector3(odom1.pose.pose.position.x, odom1.pose.pose.position.y, odom1.pose.pose.position.z));// 应用修正变换,将odom1的坐标转换到odom0的坐标系下odom1_transform = transform_correction * odom1_transform;// 修正后的odom1数据odom_corrected = odom1;odom_corrected.pose.pose.position.x = odom1_transform.getOrigin().getX();odom_corrected.pose.pose.position.y = odom1_transform.getOrigin().getY();odom_corrected.pose.pose.position.z = odom1_transform.getOrigin().getZ();tf::quaternionTFToMsg(odom1_transform.getRotation(), odom_corrected.pose.pose.orientation); // 将修正后的姿态转换为ROS消息格式// 发布修正后的odom1消息odom_corrected.header.frame_id = odom_frame_id;odom_corrected.child_frame_id = child_frame_id;if (odom1_covariance_diag_value != -1){// 设置修正后的协方差矩阵(对角线值)odom_corrected.pose.covariance = {odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value};}pub_1.publish(odom_corrected); // 发布修正后的odom1消息}if (has_new_odom0_received){// 设置修正后的odom0数据odom0.header.frame_id = odom_frame_id;odom0.child_frame_id = child_frame_id;if (odom0_covariance_diag_value != -1){// 设置修正后的协方差矩阵(对角线值)odom0.pose.covariance = {odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value};}pub_0.publish(odom0); // 发布修正后的odom0消息}}has_new_odom0_received = false; // 重置odom0接收标志has_new_odom1_received = false; // 重置odom1接收标志ros::spinOnce(); // 处理回调函数的未处理消息loop_rate.sleep(); // 控制循环频率}return 0;
}

修正变换的计算与应用示例

        让我们假设 odom0odom1 的初始位置和姿态如下:

  • odom0 的位置为 (1, 2, 0),姿态为四元数 (0, 0, 0, 1)。
  • odom1 的位置为 (2, 3, 0),姿态为四元数 (0, 0, 0.7071, 0.7071)(旋转90度)。

        当 transform_correction 被计算时,它会将 odom1 的坐标转换到 odom0 的坐标系下。

        在计算了 transform_correction 之后,如果 odom1 的新数据为位置 (2, 4, 0),姿态为四元数 (0, 0, 0.7071, 0.7071),应用 transform_correction 后,转换到 odom0 的坐标系中可能会得到修正后的数据,确保 odom1 的数据在 odom0 的坐标系下是对齐和一致的。

        这个转换过程会调整 odom1 的位置和姿态,使得它们在 odom0 的坐标系下具有一致的表示。通过这种方式,可以实现不同来源的里程计数据的对齐和融合。

这篇关于实现ROS中两个里程计数据的转换到同一坐标系下的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073783

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动