实现ROS中两个里程计数据的转换到同一坐标系下

2024-06-19 02:44

本文主要是介绍实现ROS中两个里程计数据的转换到同一坐标系下,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在多传感器融合的场景中,不同传感器可能会提供不同的位置信息。这段代码的目标是将来自两个不同来源的里程计数据转换到同一个参考坐标系(在这里,选择 odom0 的坐标系作为参考)下进行对齐,以便于后续的融合和处理。

核心步骤解析

  1. 读取和订阅里程计数据:

    • 代码首先从ROS参数服务器读取里程计数据的订阅话题名称。
    • 然后,订阅来自两个不同来源的里程计数据,并通过回调函数来更新全局变量 odom0odom1
  2. 计算修正变换:

    • 当第一次接收到 odom0odom1 数据时,计算一个初始的修正变换 transform_correction
    • 这个修正变换用于将 odom1 的数据转换到 odom0 的坐标系下。
  3. 应用修正变换:

    • 对于后续接收到的 odom1 数据,代码会应用这个修正变换,将 odom1 的姿态和位置转换到 odom0 的坐标系中。
    • 转换后的数据会被发布到带有后缀的修正话题上。

详细的代码注释

下面是原代码,加上了更详细的中文注释,帮助理解每一步的目的和操作:

#include <ros/ros.h>
#include <tf/transform_datatypes.h>
#include <tf/transform_broadcaster.h>
#include "nav_msgs/Odometry.h"// 定义全局变量来存储里程计消息
nav_msgs::Odometry odom0;
nav_msgs::Odometry odom1;
bool has_new_odom0_received = false;
bool has_new_odom1_received = false;// odom0的回调函数,当接收到odom0的里程计数据时调用
void odometry0_callback(const nav_msgs::Odometry::ConstPtr& odom_msg)
{odom0 = *odom_msg; // 更新全局变量odom0if (!has_new_odom0_received) has_new_odom0_received = true; // 标记为已接收新数据
}// odom1的回调函数,当接收到odom1的里程计数据时调用
void odometry1_callback(const nav_msgs::Odometry::ConstPtr& odom_msg)
{odom1 = *odom_msg; // 更新全局变量odom1if (!has_new_odom1_received) has_new_odom1_received = true; // 标记为已接收新数据
}int main(int argc, char *argv[])
{ros::init(argc, argv, "odometry_fusion_correction"); // 初始化ROS节点ros::NodeHandle n("~"); // 创建私有节点句柄// 从参数服务器获取里程计话题名称和修正话题的后缀std::string odom0_topic = "/odom0";n.getParam("odom0_topic", odom0_topic);std::string odom1_topic = "/odom1";n.getParam("odom1_topic", odom1_topic);std::string correction_suffix = "/corrected";n.getParam("correction_suffix", correction_suffix);// 订阅odom0和odom1话题ros::Subscriber sub_0 = n.subscribe(odom0_topic, 1, odometry0_callback);ros::Subscriber sub_1 = n.subscribe(odom1_topic, 1, odometry1_callback);// 创建修正后的odom0和odom1话题的发布者ros::Publisher pub_0 = n.advertise<nav_msgs::Odometry>(odom0_topic + correction_suffix, 1);ros::Publisher pub_1 = n.advertise<nav_msgs::Odometry>(odom1_topic + correction_suffix, 1);// 从参数服务器获取里程计和子坐标系的名称std::string odom_frame_id = "odom";n.getParam("odom_frame_id", odom_frame_id);std::string child_frame_id = "base_link";n.getParam("child_frame_id", child_frame_id);// 获取协方差的对角线值,用于里程计的姿态不确定性float odom0_covariance_diag_value = -1;n.getParam("odom0_covariance_diag_value", odom0_covariance_diag_value);float odom1_covariance_diag_value = -1;n.getParam("odom1_covariance_diag_value", odom1_covariance_diag_value);bool initialization_done = false; // 初始化标志ros::Rate loop_rate(10); // 循环频率设为10Hztf::TransformBroadcaster br; // 创建TF广播器tf::Transform transform_correction; // 修正变换while (ros::ok()){nav_msgs::Odometry odom_corrected; // 用于存储修正后的里程计消息// 当接收到足够的数据后,计算初始的修正变换if (!initialization_done && has_new_odom0_received && has_new_odom1_received){// 将odom0的四元数消息转换为TF四元数tf::Quaternion odom0_orientation;tf::quaternionMsgToTF(odom0.pose.pose.orientation, odom0_orientation);// 基于odom0的姿态和位置,计算修正变换transform_correction = tf::Transform(odom0_orientation, tf::Vector3(odom0.pose.pose.position.x, odom0.pose.pose.position.y, odom0.pose.pose.position.z));initialization_done = true; // 设置初始化完成标志}if (initialization_done){if (has_new_odom1_received){// 将odom1的四元数消息转换为TF四元数tf::Quaternion odom1_orientation;tf::quaternionMsgToTF(odom1.pose.pose.orientation, odom1_orientation);// 基于odom1的姿态和位置,构造TF变换对象tf::Transform odom1_transform(odom1_orientation, tf::Vector3(odom1.pose.pose.position.x, odom1.pose.pose.position.y, odom1.pose.pose.position.z));// 应用修正变换,将odom1的坐标转换到odom0的坐标系下odom1_transform = transform_correction * odom1_transform;// 修正后的odom1数据odom_corrected = odom1;odom_corrected.pose.pose.position.x = odom1_transform.getOrigin().getX();odom_corrected.pose.pose.position.y = odom1_transform.getOrigin().getY();odom_corrected.pose.pose.position.z = odom1_transform.getOrigin().getZ();tf::quaternionTFToMsg(odom1_transform.getRotation(), odom_corrected.pose.pose.orientation); // 将修正后的姿态转换为ROS消息格式// 发布修正后的odom1消息odom_corrected.header.frame_id = odom_frame_id;odom_corrected.child_frame_id = child_frame_id;if (odom1_covariance_diag_value != -1){// 设置修正后的协方差矩阵(对角线值)odom_corrected.pose.covariance = {odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom1_covariance_diag_value};}pub_1.publish(odom_corrected); // 发布修正后的odom1消息}if (has_new_odom0_received){// 设置修正后的odom0数据odom0.header.frame_id = odom_frame_id;odom0.child_frame_id = child_frame_id;if (odom0_covariance_diag_value != -1){// 设置修正后的协方差矩阵(对角线值)odom0.pose.covariance = {odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, odom0_covariance_diag_value};}pub_0.publish(odom0); // 发布修正后的odom0消息}}has_new_odom0_received = false; // 重置odom0接收标志has_new_odom1_received = false; // 重置odom1接收标志ros::spinOnce(); // 处理回调函数的未处理消息loop_rate.sleep(); // 控制循环频率}return 0;
}

修正变换的计算与应用示例

        让我们假设 odom0odom1 的初始位置和姿态如下:

  • odom0 的位置为 (1, 2, 0),姿态为四元数 (0, 0, 0, 1)。
  • odom1 的位置为 (2, 3, 0),姿态为四元数 (0, 0, 0.7071, 0.7071)(旋转90度)。

        当 transform_correction 被计算时,它会将 odom1 的坐标转换到 odom0 的坐标系下。

        在计算了 transform_correction 之后,如果 odom1 的新数据为位置 (2, 4, 0),姿态为四元数 (0, 0, 0.7071, 0.7071),应用 transform_correction 后,转换到 odom0 的坐标系中可能会得到修正后的数据,确保 odom1 的数据在 odom0 的坐标系下是对齐和一致的。

        这个转换过程会调整 odom1 的位置和姿态,使得它们在 odom0 的坐标系下具有一致的表示。通过这种方式,可以实现不同来源的里程计数据的对齐和融合。

这篇关于实现ROS中两个里程计数据的转换到同一坐标系下的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073783

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time