自注意力与卷积高效融合!多SOTA、兼顾低成本与高性能

2024-06-18 19:52

本文主要是介绍自注意力与卷积高效融合!多SOTA、兼顾低成本与高性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自注意力机制中,模型计算输入序列中不同位置的相关性得分,以生成连接权重,从而关注序列中的重要部分。而卷积通过滑动窗口的方式,在输入上应用相同权重矩阵来提取局部特征。

如果将以上两者结合,就可以同时利用自注意力捕捉长距离依赖关系和卷积运算提取局部特征的能力,让模型更全面地理解输入数据(特别是在处理复杂任务时),实现更高的性能和更低的计算成本。比如典型案例X-volution与ACmix。

目前这种结合策略的高质量成果已有不少,我从中整理了10个比较有代表性的供同学们参考,原文以及开源代码都整理好了,希望能给各位的论文添砖加瓦。

论文原文以及开源代码需要的同学看文末

X-volution: On the unification of convolution and self-attention

方法:本文提出了一种新的原子操作符X-volution,将卷积和自注意力操作符集成在一起,通过实验证明了它在图像分类、目标检测和实例分割等任务上取得了显著的性能改进。

创新点:

  • 提出了X-volution原子操作符,将基本的卷积和自注意力操作符整合到一个统一的计算块中,从而在local vs. non-local/linear vs. non-linear这两方面都能获得非常显著的性能提升。

  • 首次理论推导了一种全局自注意力近似方案PSSA,通过这种方案能够在计算上转换为卷积操作,从而简化了模型的拓扑结构。

  • 在图像分类、目标检测和实例分割等主流视觉任务上进行了广泛的定性和定量评估,结果表明X-volution操作符取得了非常有竞争力的改进效果。

On the Integration of Self-Attention and Convolution

方法:本文揭示了自注意力和卷积之间的紧密关系,并提出了一种有效且高效的混合模型ACmix。该研究对于深入理解和改进卷积和自注意力模块在计算机视觉任务中的应用具有重要意义。

创新点:

  • 将传统的卷积和自注意力模块结合在一起,形成一种混合模型,名为ACmix。ACmix利用了卷积和自注意力的优势,并且与纯卷积或自注意力相比,具有更小的计算开销。

  • 揭示了自注意力和卷积之间的紧密关系,发现它们在投影输入特征图方面都使用了相同的1×1卷积操作。基于这一发现,提出了ACmix模型,通过共享相同的重型操作来将自注意力和卷积模块集成在一起。

UniFormer: Unifying Convolution and Self-attention for Visual Recognition

方法:论文提出了一种新颖的统一Transformer(UniFormer),它可以在简洁的Transformer格式中无缝整合卷积和自注意的优点。与典型的Transformer模块不同,UniFormer 模块中的关系聚合器在浅层和深层分别配备了局部和全局标记亲和力,从而可以同时解决冗余和依赖性问题,实现高效的表征学习。

创新点:

  • 动态位置嵌入(Dynamic Position Embedding):该方法通过深度卷积和零填充的方式,灵活地将位置信息嵌入到Transformer中,以提高模型的灵活性和识别性能。

  • 层级堆叠的UniFormer块:作者通过在不同阶段使用局部和全局UniFormer块的方式,逐步学习逐渐增长的视觉表示,以捕捉图像中的语义信息。

  • 作者提出了一种关系聚合器设计,既能减少局部冗余又能学习全局依赖关系,通过将卷积和自注意力相结合,实现了高效而有效的特征学习。

MixFormer: Mixing Features across Windows and Dimensions

方法:本研究提出了MixFormer,针对局部窗口自注意力在视觉任务中存在的有限感受野和建模能力不足问题进行了解决。通过并行设计将局部窗口自注意力与深度卷积相结合,模拟窗口之间的连接以扩大感受野;同时,引入了双向交互设计,增强了通道和空间维度上的建模能力。

创新点:

  • 并行设计:通过在不同的视觉任务中进行连续设计,验证了并行设计能够在特征表示学习方面取得更好的效果。

  • 双向交互:引入了双向交互来增强通道和空间维度的建模能力。结果表明,通道交互和空间交互在所有不同的视觉任务中都优于没有交互的模型。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“自卷积”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于自注意力与卷积高效融合!多SOTA、兼顾低成本与高性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072957

相关文章

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX