动手学深度学习(Pytorch版)代码实践 -深度学习基础-08多层感知机简洁版

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -深度学习基础-08多层感知机简洁版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

08多层感知机简洁版

import torch
from torch import nn
from d2l import torch as d2l
import liliPytorch as lpnet = nn.Sequential(nn.Flatten(),nn.Linear(784,256),nn.ReLU(),nn.Linear(256,10)  
)#函数接受一个参数 m,通常是一个神经网络模块(例如,线性层,卷积层等)
def init_weights(m):
#这行代码检查传入的模块 m 是否是 nn.Linear 类型,即线性层(全连接层)if type(m) == nn.Linear:nn.init.normal_(m.weight,std=0.01)
#m.weight 是线性层的权重矩阵。
#std=0.01 指定了初始化权重的标准差为 0.01,表示权重将从均值为0,标准差为0.01的正态分布中随机采样。#model.apply(init_weights) 会遍历模型的所有模块,并对每个模块调用 init_weights 函数。
#如果模块是 nn.Linear 类型,则初始化它的权重。
net.apply(init_weights)batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(),lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)#训练
lp.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)#验证
lp.predict_ch3(net, test_iter)
d2l.plt.show() 

运行结果:

<Figure size 350x250 with 1 Axes>
epoch: 1,train_loss: 1.0443685918807983,train_acc: 0.64345,test_acc: 0.7608
<Figure size 350x250 with 1 Axes>
epoch: 2,train_loss: 0.5980708345413208,train_acc: 0.7904166666666667,test_acc: 0.7707
<Figure size 350x250 with 1 Axes>
epoch: 3,train_loss: 0.5194601311365763,train_acc: 0.8209166666666666,test_acc: 0.8143
<Figure size 350x250 with 1 Axes>
epoch: 4,train_loss: 0.4801325536727905,train_acc: 0.8319666666666666,test_acc: 0.827
<Figure size 350x250 with 1 Axes>
epoch: 5,train_loss: 0.4518238489786784,train_acc: 0.8414833333333334,test_acc: 0.8358

这篇关于动手学深度学习(Pytorch版)代码实践 -深度学习基础-08多层感知机简洁版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072788

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学