本文主要是介绍智能优化算法应用:基于麻雀搜索优化K-means图像分割算法 - 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
智能优化算法应用:基于麻雀搜索优化K-means图像分割算法 - 附代码
摘要:基于麻雀搜索优化K-means图像分割算法。
1.K-means原理
K-Means算法是一种无监督分类算法,假设有无标签数据集:
X = [ x 1 , x 2 , . . . , x n ] (1) X = [x_1,x_2,...,x_n] \tag{1} X=[x1,x2,...,xn](1)
该算法的任务是将数据集聚类成 k k k簇 C = C 1 , C 2 , . . . , C k C = C_1,C2,...,C_k C=C1,C2,...,Ck,最小化损失函数为:
E = ∑ i = 1 k ∑ x ∈ C i ∣ ∣ x − u i ∣ ∣ 2 (2) E = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 \tag{2} E=i=1∑kx∈Ci∑∣∣x−ui∣∣2(2)
其中 u i u_i ui为簇的中心点:
u i = 1 ∣ C i ∣ ∑ x ∈ C i x (3) u_i = \frac{1}{|C_i|}\sum_{x\in C_i}x \tag{3} ui=∣Ci∣1x∈Ci∑x(3)
要找到以上问题的最优解需要遍历所有可能的簇划分,K-Mmeans算法使用贪心策略求得一个近似解,具体步骤如下:
1.在样本中随机选取 k k k个样本点充当各个簇的中心点 { u 1 , u 2 , . . . , u k } \{u_1,u_2,...,u_k\} {u1,u2,...,uk}
2.计算所有样本点与各个簇中心之间的距离 d i s t ( x i , u j ) dist(x_i,u_j) dist(xi,uj),然后把样本点划入最近的簇中 x i ∈ u n e a r e s t x_i \in u_{nearest} xi∈unearest
3.根据簇中已有的样本点,重新计算簇中心
u i = 1 ∣ C i ∣ ∑ x ∈ C i x u_i = \frac{1}{|C_i|}\sum_{x\in C_i}x ui=∣Ci∣1x∈Ci∑x
4.重复2、3
K-means算法得到的聚类结果严重依赖与初始簇中心的选择,如果初始簇中心选择不好,就会陷入局部最优解.因此初始簇中心的选择非常重要。本文利用麻雀优化算法对初始簇中心进行优化,改进其容易陷入局部最优的特点。
2.基于麻雀搜索算法的Kmeans聚类
麻雀搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/108830958
适应度函数:利用麻雀搜索算法改进kmeans时,以聚类中心作为麻雀算法的优化变量,适应度函数设计如下:
f i t n e s s = ∑ i = 1 k ∑ x ∈ C i ∣ ∣ x − u i ∣ ∣ 2 fitness = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 fitness=i=1∑kx∈Ci∑∣∣x−ui∣∣2
该适应度函数与kmeans的最小损失函数一致。
算法的具体流程如下:
1.随机抽样待分类数据点,作为麻雀搜索聚类候选点。
2.利用麻雀搜索算法搜索最小损失的的聚类点。
3.将这些聚类点作为kmeans算法的初始聚类点。
4.利用kmeans获得最终的聚类点。
3.算法实验结果
将基于麻雀搜索优化的Kmeans算法用于图像的分割实验。对于图像,选取10%的像素点作为聚类候选点。
对于灰度图像聚类个数2,3,4的结果如下图所示:
对于彩色图像的聚类效果如下图所示:
收敛曲线:
4.Matlab代码
个人资料介绍
这篇关于智能优化算法应用:基于麻雀搜索优化K-means图像分割算法 - 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!