智能优化算法应用:基于麻雀搜索优化K-means图像分割算法 - 附代码

2024-06-18 07:32

本文主要是介绍智能优化算法应用:基于麻雀搜索优化K-means图像分割算法 - 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法应用:基于麻雀搜索优化K-means图像分割算法 - 附代码

文章目录


摘要:基于麻雀搜索优化K-means图像分割算法。

1.K-means原理

K-Means算法是一种无监督分类算法,假设有无标签数据集:
X = [ x 1 , x 2 , . . . , x n ] (1) X = [x_1,x_2,...,x_n] \tag{1} X=[x1,x2,...,xn](1)
该算法的任务是将数据集聚类成 k k k C = C 1 , C 2 , . . . , C k C = C_1,C2,...,C_k C=C1,C2,...,Ck,最小化损失函数为:
E = ∑ i = 1 k ∑ x ∈ C i ∣ ∣ x − u i ∣ ∣ 2 (2) E = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 \tag{2} E=i=1kxCixui2(2)
其中 u i u_i ui为簇的中心点:
u i = 1 ∣ C i ∣ ∑ x ∈ C i x (3) u_i = \frac{1}{|C_i|}\sum_{x\in C_i}x \tag{3} ui=Ci1xCix(3)
要找到以上问题的最优解需要遍历所有可能的簇划分,K-Mmeans算法使用贪心策略求得一个近似解,具体步骤如下:

1.在样本中随机选取 k k k个样本点充当各个簇的中心点 { u 1 , u 2 , . . . , u k } \{u_1,u_2,...,u_k\} {u1,u2,...,uk}

2.计算所有样本点与各个簇中心之间的距离 d i s t ( x i , u j ) dist(x_i,u_j) dist(xi,uj),然后把样本点划入最近的簇中 x i ∈ u n e a r e s t x_i \in u_{nearest} xiunearest

3.根据簇中已有的样本点,重新计算簇中心
u i = 1 ∣ C i ∣ ∑ x ∈ C i x u_i = \frac{1}{|C_i|}\sum_{x\in C_i}x ui=Ci1xCix

4.重复2、3

K-means算法得到的聚类结果严重依赖与初始簇中心的选择,如果初始簇中心选择不好,就会陷入局部最优解.因此初始簇中心的选择非常重要。本文利用麻雀优化算法对初始簇中心进行优化,改进其容易陷入局部最优的特点。

2.基于麻雀搜索算法的Kmeans聚类

麻雀搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/108830958

适应度函数:利用麻雀搜索算法改进kmeans时,以聚类中心作为麻雀算法的优化变量,适应度函数设计如下:
f i t n e s s = ∑ i = 1 k ∑ x ∈ C i ∣ ∣ x − u i ∣ ∣ 2 fitness = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 fitness=i=1kxCixui2
该适应度函数与kmeans的最小损失函数一致。

算法的具体流程如下:

1.随机抽样待分类数据点,作为麻雀搜索聚类候选点。

2.利用麻雀搜索算法搜索最小损失的的聚类点。

3.将这些聚类点作为kmeans算法的初始聚类点。

4.利用kmeans获得最终的聚类点。

3.算法实验结果

将基于麻雀搜索优化的Kmeans算法用于图像的分割实验。对于图像,选取10%的像素点作为聚类候选点。

对于灰度图像聚类个数2,3,4的结果如下图所示:

在这里插入图片描述

对于彩色图像的聚类效果如下图所示:

在这里插入图片描述
在这里插入图片描述

收敛曲线:
在这里插入图片描述

4.Matlab代码

个人资料介绍

这篇关于智能优化算法应用:基于麻雀搜索优化K-means图像分割算法 - 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071660

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字