基于麻雀搜索算法的同步优化特征选择 - 附代码

2024-06-18 07:18

本文主要是介绍基于麻雀搜索算法的同步优化特征选择 - 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于麻雀搜索算法的同步优化特征选择 - 附代码

文章目录

  • 基于麻雀搜索算法的同步优化特征选择 - 附代码
    • 1.数据集
    • 2.SVM模型建立
    • 3.麻雀搜索算法同步优化特征选择
    • 4.测试结果
    • 5.参考文献:
    • 6.Matlab代码

摘要:针对传统支持向量机在封装式特征选择中分类效果差、子集选取冗余、计算性能易受核函数参数影响的不足, 利用麻雀优化算法对其进行同步优化。

1.数据集

wine 数据的来源是 UCI 数据库 , 记录的是在意大利同一区域里三种不同品种的葡萄酒的化学成分分析,数据里含有 178 个样本,每个样本含有 13 个特征分量(化学成分〉,每个样本 的类别标签已给。将这 178 个样本的 50%作为训练集,另 50%作为测试集 ,用训练集对 SVM 进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。

整体数据存储在 chapter_WineClass. mat ,解释如下: classnumber = 3 ,记录类别数目;

wine, 178 × 13 的 一个 double 型的矩阵,记录 178 个样本的 13 个属性;

wine_ labels, 178 × 1的 一个 double 型的列向盘,记录 178 个样本各自的类别标签 。

请添加图片描述

图1.数据集

2.SVM模型建立

首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理(必要的时候 还需要进行特征提取),之后用训练集对 SVM 进行训练,最后用得到的模型来预测测试集的分类标签。
请添加图片描述

图2.SVM模型

其中数据预处理采用归一化处理:对训练集和测试集进行归一化预处理,采用的归一化映射如下 。
y = x − x m i n x m a x − x m i n (1) y = \frac{x-x_{min}}{x_{max} - x{min}} \tag{1} y=xmaxxminxxmin(1)

3.麻雀搜索算法同步优化特征选择

​ 在元启发式群智能算法优化计算时, 对于不同的优化问题, 种群个体代表不同含义. 针对特征选择问题而言, 其实质是二元优化问题, 优化后的选择特征结果表示仅限于“0”与“1”, 值“0”表示未选择该特征, 值“1”表示选择该特征. 优化选择特征时, 种群的个体解可视为一维向量, 每个维度的原始数据值与 0.5 比较, 大于等于 0.5 则选择该特征, 否则剔除该特征.特征选择可视为多个目标优化问题, 当分类结果中分类准确率较高, 选择特征子集个数较少时说明所得分类效果优秀. 在算法迭代过程中, 一般采用适应度函数来评估每个解的质量. 为了平衡分类准确率和特征子集个数这两个指标.因此,根据SVM分类器所得到的解的分类准确率与特征选择的所选特征子集个数, 设计适应度函数 如下所示:
f i t e n e s s = a r g m a x ( a c c u r a c y [ p r e d i c t ( t r a i n ) ] + a c c u r a c y [ p r e d i c t ( t e s t ) ] + 1 − r / N ) fiteness = argmax(accuracy[predict(train)]+accuracy[predict(test)] + 1 - r/N) fiteness=argmaxaccuracy[predict(train)]+accuracy[predict(test)]+1r/N
其中accuracy[predict(train)],accuracy[predict(test)]分别为训练集和测试集(验证集)准确率,根据自身需要看是只用训练集准确率还是综合考虑验证集准确率,r为选择的特征个数,N为总特征个数。

由于麻雀是求极小值,将目标求最大值转换为求极小值
f i t n e s s = − f i t n e s s fitness = -fitness fitness=fitness
请添加图片描述

4.测试结果

麻雀算法参数设置如下:

%%  麻雀参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数为数据集特征总数 。
%目标函数
fobj = @(x) fun(x,train_wine_labels,train_wine,test_wine_labels,test_wine); 
% 优化参数的个数 特征维度
dim = size(train_wine,2); %特征维度
% 优化参数的取值下限,[0,1],大于0.5为选择该特征,小于0.5为不选择该特征
lb = 0;
ub = 1;
%%  参数设置
pop =10; %麻雀数量
Max_iteration=50;%最大迭代次数             
%% 优化
[Best_pos,Best_score,curve]=SSA(pop,Max_iteration,lb,ub,dim,fobj); 

请添加图片描述
请添加图片描述

基础SVM训练集最终预测准确率:100
基础SVM测试集最终预测准确率:98.8764
SSA特征选择后SVM训练集最终预测准确率:100
SSA特征选择后SVM测试集最终预测准确率:100
总特征数:13
麻雀算法选择的特征总数:9
麻雀算法选择的特征(0为不选择,1为选择):1 0 0 1 1 1 1 0 0 1 1 1 1

从结果来看,经过特征选择后,特征数明显减少,由13维变为9维,而且训练集和测试集精度均能达到比较好的结果。

5.参考文献:

[1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-11-02].https://doi.org/10.13195/j.kzyjc.2020.1025.

6.Matlab代码

这篇关于基于麻雀搜索算法的同步优化特征选择 - 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071638

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者