基于麻雀搜索算法的同步优化特征选择 - 附代码

2024-06-18 07:18

本文主要是介绍基于麻雀搜索算法的同步优化特征选择 - 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于麻雀搜索算法的同步优化特征选择 - 附代码

文章目录

  • 基于麻雀搜索算法的同步优化特征选择 - 附代码
    • 1.数据集
    • 2.SVM模型建立
    • 3.麻雀搜索算法同步优化特征选择
    • 4.测试结果
    • 5.参考文献:
    • 6.Matlab代码

摘要:针对传统支持向量机在封装式特征选择中分类效果差、子集选取冗余、计算性能易受核函数参数影响的不足, 利用麻雀优化算法对其进行同步优化。

1.数据集

wine 数据的来源是 UCI 数据库 , 记录的是在意大利同一区域里三种不同品种的葡萄酒的化学成分分析,数据里含有 178 个样本,每个样本含有 13 个特征分量(化学成分〉,每个样本 的类别标签已给。将这 178 个样本的 50%作为训练集,另 50%作为测试集 ,用训练集对 SVM 进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。

整体数据存储在 chapter_WineClass. mat ,解释如下: classnumber = 3 ,记录类别数目;

wine, 178 × 13 的 一个 double 型的矩阵,记录 178 个样本的 13 个属性;

wine_ labels, 178 × 1的 一个 double 型的列向盘,记录 178 个样本各自的类别标签 。

请添加图片描述

图1.数据集

2.SVM模型建立

首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理(必要的时候 还需要进行特征提取),之后用训练集对 SVM 进行训练,最后用得到的模型来预测测试集的分类标签。
请添加图片描述

图2.SVM模型

其中数据预处理采用归一化处理:对训练集和测试集进行归一化预处理,采用的归一化映射如下 。
y = x − x m i n x m a x − x m i n (1) y = \frac{x-x_{min}}{x_{max} - x{min}} \tag{1} y=xmaxxminxxmin(1)

3.麻雀搜索算法同步优化特征选择

​ 在元启发式群智能算法优化计算时, 对于不同的优化问题, 种群个体代表不同含义. 针对特征选择问题而言, 其实质是二元优化问题, 优化后的选择特征结果表示仅限于“0”与“1”, 值“0”表示未选择该特征, 值“1”表示选择该特征. 优化选择特征时, 种群的个体解可视为一维向量, 每个维度的原始数据值与 0.5 比较, 大于等于 0.5 则选择该特征, 否则剔除该特征.特征选择可视为多个目标优化问题, 当分类结果中分类准确率较高, 选择特征子集个数较少时说明所得分类效果优秀. 在算法迭代过程中, 一般采用适应度函数来评估每个解的质量. 为了平衡分类准确率和特征子集个数这两个指标.因此,根据SVM分类器所得到的解的分类准确率与特征选择的所选特征子集个数, 设计适应度函数 如下所示:
f i t e n e s s = a r g m a x ( a c c u r a c y [ p r e d i c t ( t r a i n ) ] + a c c u r a c y [ p r e d i c t ( t e s t ) ] + 1 − r / N ) fiteness = argmax(accuracy[predict(train)]+accuracy[predict(test)] + 1 - r/N) fiteness=argmaxaccuracy[predict(train)]+accuracy[predict(test)]+1r/N
其中accuracy[predict(train)],accuracy[predict(test)]分别为训练集和测试集(验证集)准确率,根据自身需要看是只用训练集准确率还是综合考虑验证集准确率,r为选择的特征个数,N为总特征个数。

由于麻雀是求极小值,将目标求最大值转换为求极小值
f i t n e s s = − f i t n e s s fitness = -fitness fitness=fitness
请添加图片描述

4.测试结果

麻雀算法参数设置如下:

%%  麻雀参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数为数据集特征总数 。
%目标函数
fobj = @(x) fun(x,train_wine_labels,train_wine,test_wine_labels,test_wine); 
% 优化参数的个数 特征维度
dim = size(train_wine,2); %特征维度
% 优化参数的取值下限,[0,1],大于0.5为选择该特征,小于0.5为不选择该特征
lb = 0;
ub = 1;
%%  参数设置
pop =10; %麻雀数量
Max_iteration=50;%最大迭代次数             
%% 优化
[Best_pos,Best_score,curve]=SSA(pop,Max_iteration,lb,ub,dim,fobj); 

请添加图片描述
请添加图片描述

基础SVM训练集最终预测准确率:100
基础SVM测试集最终预测准确率:98.8764
SSA特征选择后SVM训练集最终预测准确率:100
SSA特征选择后SVM测试集最终预测准确率:100
总特征数:13
麻雀算法选择的特征总数:9
麻雀算法选择的特征(0为不选择,1为选择):1 0 0 1 1 1 1 0 0 1 1 1 1

从结果来看,经过特征选择后,特征数明显减少,由13维变为9维,而且训练集和测试集精度均能达到比较好的结果。

5.参考文献:

[1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-11-02].https://doi.org/10.13195/j.kzyjc.2020.1025.

6.Matlab代码

这篇关于基于麻雀搜索算法的同步优化特征选择 - 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071638

相关文章

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义