05眼动识别软件详情2波形优化

2024-06-18 03:36

本文主要是介绍05眼动识别软件详情2波形优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对应视频链接点击直达

01项目点击下载,可直接运行(含数据库)

05眼动识别软件详情2

    • 对应视频链接点击直达
    • 期望的数据展示
    • 数据波形对比
    • 如何实现
      • 几种常用滤波介绍
        • 维纳滤波
        • 巴特沃斯滤波器
        • 中值滤波
        • 排序滤波
      • 推荐
    • 结语
        • 其他
        • 以下是废话

原始数据的波形,简直没法看!
这章来说说波形的优化,让数据展示明显!

期望的数据展示

请添加图片描述

数据波形对比

同类型数据,无滤波
请添加图片描述
同类型数据,有滤波
请添加图片描述
主观的说,下面的数据,人能看···

如何实现

几种常用滤波介绍

维纳滤波

信号经过系统之后,相当于进行了卷积操作,若想让其复原,只需再用系统进行反卷积即可。如果没有信号,系统却有了响应,那么这种噪声可以理解为系统的噪声。如果系统的数学形式是已知的,这种噪声就很容易滤掉,如果未知,那就需要进行估计,这就是维纳做的工作。

一个有限脉冲响应(finite impulse response, FIR),其离散形式可通过卷积表示为
在这里插入图片描述
x=sin(1.5πt(1−t)+2.1)+0.1sin(2.5πt+1)+0.18cos(7.6πt)
请添加图片描述

import numpy as np
import scipy.signal as sst = np.linspace(-1, 1, 201)
PI = 2*np.pi
x = (np.sin(PI*0.75*t*(1-t) + 2.1) +0.1*np.sin(PI*1.25*t + 1) +0.18*np.cos(PI*3.85*t))# 原始数据添加噪声
np.random.seed(42)
xn = x + np.random.rand(len(t))w = ss.wiener(xn, 9) # 维纳滤波plt.scatter(t, xn, marker='.', label="original")
plt.plot(t, w, c = 'r', label="wiener")
plt.legend()
plt.show()

wiener是signal模块中的滤波函数,其输入参数分别是待滤波数据和滤波模板,此外还有一个noise,表示系统噪声,默认为None,表示自行估计噪声。

巴特沃斯滤波器

FIR的特点是无反馈,yn 完全由xn决定,如果响应受到反馈的影响,便是无限脉冲响应(infinite impulse response, IIR),其离散形式变为
在这里插入图片描述
滤波器设计,就是对ak,bk具体形式的求解,signal模块中提供了一些函数,对这两种信号进行滤波。仍以函数x为例,在添加噪声之后,进行滤波,对于不同的滤波函数,其效果如下
在这里插入图片描述

import scipy.signal as ss
import matplotlib.pyplot as pltb, a = ss.butter(3, 0.05)
z = ss.lfilter(b, a, xn)
z2 = ss.lfilter(b, a, z)
z3 = ss.filtfilt(b, a, xn)# 下面为绘图代码
plt.plot(t, z, 'r--', label="lfilter, once")
plt.plot(t, z2, 'g--', label="lfilter, twice")
plt.plot(t, z3, 'b', label="filtfilt")
plt.scatter(t, xn, marker='.', alpha=0.75)plt.grid()
plt.legend()
plt.show()

butter函数生成3阶巴特沃斯滤波器对应的 aaa和bbb值
lfilter是最基础的脉冲响应滤波器,从左侧开始进行滤波,故而会产生相位差
filtfilt从正反两个方向滤波,可消除了lfilter产生的相位差

中值滤波

中值滤波,就是挑选出将个滤波模板范围内数据的中位数,例如[1,3,2,4]这个数组,给定一个长度为3的滤波窗口,那么元素3所在位置的滤波范围就是1,3,2,其中位数是2,所以要把3更改为2。

import numpy as np
import scipy.signal as ss
x = [1,3,2,4]
ss.medfilt(x,3) # [1, 2, 3, 2]

二维的中值滤波在图像处理中非常常见,对椒盐噪声有着非常霸道的滤除效果。所谓椒盐噪声,如下方左图所示,就是图像中随机产生的黑色和白色的斑点。在使用二维的中值滤波之后,整张图片都变得清澈了。
请添加图片描述
参考代码:

from scipy.misc import ascent
import matplotlib.pyplot as pltimg = ascent()
img = img[:256, :256]
r = np.random.rand(*img.shape)
img[r>0.96] = 255
img[r<0.04] = 0plt.subplot(121)
plt.imshow(img, cmap='gray')
plt.axis('off')plt.subplot(122)
imFilt = ss.medfilt2d(img, [3,3])
plt.imshow(imFilt, cmap='gray')
plt.axis('off')plt.show()
排序滤波

排序滤波是中值滤波概念的扩充,和中值滤波的区别是,在对滤波窗口中的数据进行排序之后,可以指定用以替代当前数据的数值序号。下面四个矩阵,展示了以3×3单位矩阵为滤波模板,排序滤波在不同排序参数下的结果。
请添加图片描述
此滤波过程在scipy中的实现方式如下:

x = np.arange(25).reshape(5, 5).astype(float)
I = np.identity(3)mats = {"original":x}
for i in range(3):mats[f"order_filter:{i}"] = ss.order_filter(x, I, i)

order_filter】即为signal模块提供的排序滤波函数,以输入参数(x, I, i)为例,表示从矩阵x中选出单位阵I所覆盖区域中第i小的元素。I是一个单位阵,就实际情况来看,其覆盖的第一个子阵中,以0为中心,则只能覆盖到2x2的范围,对角元素0,6,最小值是0,最大值是6。如以6为中心,则可以完全覆盖3x3的内容,最小值为0,最大值为12。
绘图代码如下:

def drawMat(x, ax=None):M, N = x.shapeif not ax:ax = plt.subplot()arrM, arrN = np.arange(M), np.arange(N)plt.yticks(arrM+0.5, arrM)plt.xticks(arrN+0.5, arrN)ax.pcolormesh(x)ax.invert_yaxis()for i,j in product(range(M),range(N)):ax.text(j+0.2, i+0.6, f"{x[i,j]}")for i,key in enumerate(mats,1):ax = plt.subplot(2,2,i)drawMat(mats[key], ax)plt.title(key)plt.show()

推荐

我这边推荐使用FIR或者IIR
我这边的代码如下:

import numpy as npdef baseline_correction(eog_signal, sampling_rate):# 计算信号的时间数组nm = int(len(eog_signal) / 4)eog_signal1 = eog_signalbaseline_corrected = []for i in range(4):eog_signal = eog_signal1[i * nm:(i + 1) * nm]time = np.arange(len(eog_signal)) / sampling_rate  # 算出这个数据的时间 并生成数组# 使用线性回归估计基线趋势coefficients = np.polyfit(time, eog_signal, 1)# 生成基线趋势baseline_trend = coefficients[0] * time + coefficients[1]# 从原始信号中减去基线趋势以进行校正baseline_corrected1 = eog_signal - baseline_trendbaseline_corrected.extend(baseline_corrected1)return baseline_corrected# 将数据转换为numpy数组fs = 256  # 举例:1000Hz# 设计FIR滤波器fir_freq = np.array([0.1, 45]) / (fs / 2)  # 将8-13Hz转换为归一化频率# 线性回归极限矫正以后的数据data_baseline = baseline_correction(eye_data, fs)应用FIR滤波器1fir_coeff = signal.firwin(numtaps=7, cutoff=fir_freq, pass_zero=False)  # 阶数指的是 numtaps - 1fir_filtered_data = signal.lfilter(fir_coeff, 1, data_baseline)  # 无反馈 滤波器 第二组系数全是1 输出只与当前和过去输入有关,与过去输出无关# 应用IIR滤波器2iir_coeff = signal.iirfilter(N=5, Wn=fir_freq, btype='band', ftype='butter')fir_filtered_data = signal.lfilter(iir_coeff[0], iir_coeff[1], data_baseline)

结语

其他

以上仅作参考,欢迎一起讨论!

V:justwaityou1314
懂的都懂
以下是废话

别的也没啥说的 , 如果觉得可以 , 希望一键三连支持一下我的B站作品

欢迎各位大佬留言吐槽,也可以深入科学探讨

这篇关于05眼动识别软件详情2波形优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071194

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

解读spring.factories文件配置详情

《解读spring.factories文件配置详情》:本文主要介绍解读spring.factories文件配置详情,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录使用场景作用内部原理机制SPI机制Spring Factories 实现原理用法及配置spring.f

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确