吴恩达2022机器学习专项课程C2W3:2.25 理解方差和偏差(诊断方差偏差正则化偏差方案搭建性能学习曲线)

本文主要是介绍吴恩达2022机器学习专项课程C2W3:2.25 理解方差和偏差(诊断方差偏差正则化偏差方案搭建性能学习曲线),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 引言
  • 名词替代
  • 影响模型偏差和方差的因素
    • 1.多项式阶数
    • 2.正则化参数
  • 判断是否有高偏差或高方差
    • 1.方法一:建立性能基准水平
    • 2.方法二:建立学习曲线
  • 解决线性回归高偏差或高方差
  • 解决神经网络的高偏差或高方差
    • 1.回顾机器学习问题
    • 2.神经网络高方差和高偏差
    • 3.神经网络正则化
  • 神经网络如何正则化
  • 总结

引言

机器学习系统开发的典型流程是从一个想法开始,然后训练模型。初次训练的结果通常不理想,因此关键在于如何决定下一步该做什么以提高模型性能。观察算法的偏差和方差(Bias and Variance)在很多应用场景中能很好地指导下一步的改进。

名词替代

J_train:训练误差
J_cv:交叉验证误差
J_test:测试误差

影响模型偏差和方差的因素

1.多项式阶数

(1)什么是高偏差和高方差

  • 如果用一条直线来拟合数据,效果不好,则认为此时模型有高偏差,高偏差的模型J_train和J_cv都很高,表现为欠拟合。
  • 如果用一个四阶多项式来拟合数据,则认为此时模型有高方差,高方差的模型J_train很低,但J_cv很高,表现为过拟合。
  • 如果用一个二次多项式来拟合数据,效果最好,此时模型既没有高偏差也没有高方差,合适的模型J_train和J_cv都较低。

在这里插入图片描述


(2) 模型复杂度对模型表现的影响

当多项式阶数(模型复杂度)增加时:

  • J_train会下降,因为模型变得更加复杂,更能拟合训练数据,此时模型高偏差。
  • J_cv在多项式次数(d)很低时很高,表示欠拟合,此时模型高偏差;在多项式次数(d)很高时也很高,表示过拟合,此时模型高方差。

只有在适中的多项式次数(如二次多项式)时,模型的J_train和J_cv都较低,表现最好。 因此要选择一个合适的多项式次数,使模型在训练数据和未见过的数据上都有较好的表现,达到偏差和方差的平衡。

在这里插入图片描述


(3)结论

  • 高偏差(欠拟合):主要指标是J_train高,表示模型在训练集上表现不好。通常J_train和J_cv接近。

  • 高方差(过拟合):主要指标是J_cv远高于J_train,即J_cv >> J_train。训练误差低但交叉验证误差高,表明模型在训练数据上表现好但在新数据上表现差。

  • 同时存在高偏差和高方差:这种情况较少见,但在某些复杂模型如神经网络中可能出现。表现为训练误差高,交叉验证误差更高。

  • 关键在于:高偏差表示模型在训练集上表现不好,高方差表示模型在交叉验证集上比在训练集上表现差得多。
    在这里插入图片描述


2.正则化参数

(1)过大的λ和过小的λ

λ过大导致模型高偏差(欠拟合),w参数几乎为0没有影响了,只有λ的常量值,此时模型绘制出来就是一条线,因此无法拟合训练样本,Jtrain较高。λ过小导致模型高方差(过拟合),Jcv远大于Jtrain。最终,合适的λ值能平衡偏差和方差,减少训练集和验证集的误差。
在这里插入图片描述


(2)通过交叉验证选择适合的λ

类似于之前选择多项式阶数的方法,先设定λ值(如λ=0),最小化成本函数得到参数,然后计算J_cv。不断尝试不同的λ值,逐步翻倍,并计算每次的J_cv。最终,通过比较不同λ值对应的J_cv差,选择J_cv最小的λ值及其对应的参数。最后,用J_test评估算法的泛化性能,并展示J_train和J_cv如何随λ变化。
在这里插入图片描述


(3)正则化参数λ对模型表现的影响

当正则化参数(λ)变大时:

  • λ=0时表示没有正则化,容易过拟合(高方差),J_train小而J_cv大。
  • λ值很大时会欠拟合(高偏差),导致J_train和J_cv都很大。随着λ增大,J_train增加。两端λ值过大或过小时J_cv都会增加。

适中的λ值可以使模型性能最佳,J_train和J_cv都较低。 最终得出结论:通过交叉验证尝试不同的λ值,选择J_cv最小的λ值,可以得到合适的模型。类似于选择多项式次数,两者图形在偏差和方差方面是镜像关系。

在这里插入图片描述


判断是否有高偏差或高方差

1.方法一:建立性能基准水平

(1)语音识别案例概述
训练一个语音识别系统,J_train(没有正确转录的部分占总体的比例)为10.8%,J_cv(测试系统性能)为14.8%。尽管10.8%看起来像是高偏差,但通过与人类表现(10.6%误差)对比,发现算法在训练集上的表现接近人类水平,仅差0.2%。真正的问题是J_cv比J_train高很多,有4%的差距,这表明算法存在高方差问题,而不是高偏差问题。通过这样的基准测试,可以更准确地判断算法性能的不足之处。
在这里插入图片描述


(2)建立性能基准水平的三种方法
在判断训练误差是否高时,建立性能的基准水平很有用。基线水平帮助你对学习算法的误差有合理的预期。

  • 常见的方法是衡量人类在该任务上的表现,因为人类通常擅长处理非结构化数据(如音频、图像或文本)。
  • 另一种方法是参考已有的竞争算法或之前的实现,通过测量这些算法的性能来建立基准。
  • 有时也可以根据之前的经验进行猜测。
    在这里插入图片描述
    (3)性能基准水平判断高偏差和高方差
    首先,通过建立性能基准水平(如人类表现)和测量训练误差及交叉验证误差来评估算法的性能。
  • (左侧)如果训练误差高于基线水平,则算法存在高偏差。
  • (中间)如果交叉验证误差远高于训练误差,则表明算法有高方差。

通过这些数值差距,可以直观地判断算法的问题。(右侧)有时算法可能同时存在高偏差和高方差,具体表现为训练误差高于基线水平,且训练误差与交叉验证误差之间的差距很大。理解这些指标有助于更好地分析和改进算法。
在这里插入图片描述


(4)小结
判断算法是否有高偏差的一种方法是看训练误差是否大,然而,在某些应用中,数据可能嘈杂,零误差不现实,因此建立性能基准很有用。你可以将训练误差与期望误差(如人类表现)对比,来判断误差是否大。同样,比较交叉验证误差和训练误差,来判断算法是否有高方差问题。通过这些方法,可以准确评估算法的偏差和方差问题。此外,学习曲线也是理解算法性能的一个有用工具。

2.方法二:建立学习曲线

学习曲线(Learning curves)是一种帮助你了解学习算法性能如何的方式,曲线随着经验的数量发生变化。,经验数量指的是算法所拥有的训练样本数。
(1)训练样本数的变化与J_train,J_cv
学习曲线帮助了解学习算法性能随训练样本数量变化的方式。横轴表示训练样本数,纵轴表示误差,包括训练误差(J_train)和交叉验证误差(J_cv)。当训练样本增多,交叉验证误差减少,因为模型变得更好。而训练误差则会增加,因为随着样本增多,模型很难完美拟合所有训练样本。少量样本时,训练误差接近零,但样本增多后,误差会增加。

通常交叉验证误差比训练误差高,因为模型更好地拟合了训练集。
在这里插入图片描述


(2)高偏差的学习曲线
高偏差情况下,训练误差和交叉验证误差随着样本增加,初期会下降但随后趋于平稳。这是因为模型太简单(如线性函数),无法适应更多数据,即使增加训练数据,误差也不会降低。

通过比较基准线(如人类表现),可以看到J_train与基准线的较大误差(间隙较大),说明高偏差问题。结论是,如果算法有高偏差,增加更多训练数据效果不大,需要其他方法改善算法性能。
在这里插入图片描述


(3)高方差的学习曲线
高方差情况下,训练误差(J_train)随训练集变大而增加,但交叉验证误差(J_cv)更高,两者之间差距大,表明模型在训练集上表现好但不能泛化。高方差的信号是交叉验证误差远高于训练误差。

增加训练数据有助于降低交叉验证误差,使其接近训练误差,从而改善算法性能。因此,扩展训练集对高方差算法有显著帮助,但对高偏差算法效果不大。总结来说,更多的训练数据可以帮助高方差算法降低误差,提高性能。在这里插入图片描述


解决线性回归高偏差或高方差

回到本周最初的例子,如果房价预测算法错误频繁,首先观察训练误差(J_train)和交叉验证误差(J_cv)或绘制学习曲线,来判断算法是高偏差还是高方差,然后根据影响方差和偏差的因素,分别应对高偏差和高方差问题。

  • 高偏差(欠拟合)问题:

    • 添加更多特征
    • 添加多项式特征
    • 减小正则化参数(λ)
  • 高方差(过拟合)问题:

    • 获取更多训练样本
    • 使用更小的特征集
    • 增加正则化参数(λ)

总结而言,增加数据和简化模型有助于解决高方差,而增强模型能力和灵活性有助于解决高偏差。缩小训练集并不能有效解决高偏差问题,还可能导致交叉验证误差增加和性能下降。在这里插入图片描述

解决神经网络的高偏差或高方差

1.回顾机器学习问题

高偏差和高方差都会损害算法的性能。神经网络结合大数据的理念,能够处理大型数据集,提供了解决高偏差和高方差的新方法。如果对数据集拟合不同阶数的多项式,简单的线性模型会有高偏差,而复杂模型会有高方差,需要在两者之间找到平衡。在神经网络出现之前,机器学习工程师常讨论这种偏差方差权衡,通过调整模型复杂度来平衡偏差和方差。神经网络提供了一种新的方法来解决这种权衡问题,虽然有一些限制。
在这里插入图片描述

2.神经网络高方差和高偏差

大型神经网络在中小型数据集上训练时,通常是低偏差机器,即能很好地拟合训练集,从而为减少偏差和方差提供了新方法。具体步骤包括:

  • 在训练集上训练神经网络,测量训练误差J_train。如果误差高,表明有高偏差问题,可以增大神经网络的规模(增加隐藏层或单元数)。
  • 如果在训练集上表现良好,检查交叉验证误差J_cv。如果交叉验证误差高于训练误差,表明有高方差问题,可以通过增加数据来解决。
  • 重复上述步骤,直到模型在交叉验证集上表现良好。

该方法的限制包括计算成本高和数据有限,但在能获取大量数据的情况下,这种方法在许多应用中表现良好。在开发过程中,根据当前高偏差或高方差的情况,采取相应措施以优化算法性能。
在这里插入图片描述

3.神经网络正则化

当训练神经网络时,选择合适的正则化方法后,大型神经网络通常比小型神经网络表现更好。虽然人们可能担心大型神经网络会导致高方差问题,但适当的正则化可以避免过拟合。唯一的缺点是大型神经网络会增加计算成本,减慢训练和推理过程。总体来说,适当正则化的大型神经网络几乎总是有益的。
在这里插入图片描述

神经网络如何正则化

代价函数可以是平方误差或逻辑损失,正则化项为 λ/2m × ∑w²,适用于所有权重w,通常不对参数b进行正则化。

在TensorFlow中实现正则化的方法是,在创建模型时添加kernel_regularizer=L2(0.01),其中0.01是λ的值。虽然可以为不同层选择不同的λ值,但通常为了简单起见,可以为所有层使用相同的λ值。这种方法可以在神经网络中实现正则化。
在这里插入图片描述

总结

  1. 只要正则化得当,更大的神经网络几乎不会带来负面影响,尽管可能会减慢算法速度,但通常不会影响性能,反而可能显著提升性能。
  2. 在训练集不太大的情况下,神经网络特别是大型神经网络通常是低偏差的,它们能够很好地拟合复杂函数,因此训练神经网络时主要解决的是方差问题而不是偏差问题。

这篇关于吴恩达2022机器学习专项课程C2W3:2.25 理解方差和偏差(诊断方差偏差正则化偏差方案搭建性能学习曲线)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071046

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量