TSP:常春藤算法IVY求解旅行商问题TSP(可以更改数据),MATLAB代码

2024-06-17 23:12

本文主要是介绍TSP:常春藤算法IVY求解旅行商问题TSP(可以更改数据),MATLAB代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、旅行商问题介绍

二、常春藤算法IVY求解TSP

2.1算法介绍

常春藤算法(Ivy algorithm,IVY)是Mojtaba Ghasemi 等人于2024年提出智能优化算法。该算法模拟了常春藤植物的生长模式,通过协调有序的种群增长以及常春藤植物的扩散和演化来实现。常春藤植物的生长速率是通过微分方程和数据密集型实验过程建模的。该算法利用附近常春藤植物的知识来确定生长方向,并通过选择最近和最重要的邻居进行自我改进。常春藤算法通过保持种群多样性、简单灵活的特点,可以轻松修改和扩展,使研究者和实践者能够探索各种修改和技术以增强其性能和能力。

参考文献:

[1]Mojtaba Ghasemi, Mohsen Zare, Pavel Trojovský, Ravipudi Venkata Rao, Eva Trojovská, Venkatachalam Kandasamy,Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm,Knowledge-Based Systems,Volume 295,2024.https://doi.org/10.1016/j.knosys.2024.111850.

2.2部分代码

close all
clear
clc
%数据集参考文献  REINELT G.TSPLIB-a traveling salesman problem[J].ORSA Journal on Computing,1991,3(4):267-384.
global data
load('data.txt')%导入TSP数据集bayg29
Dim=size(data,1)-1;%维度
lb=-100;%下界
ub=100;%上界
fobj=@Fun;%计算总距离
SearchAgents_no=100; % 种群大小(可以修改)
Max_iteration=10000; % 最大迭代次数(可以修改)
[fMin,bestX,curve]=(SearchAgents_no,Max_iteration,lb,ub,Dim,fobj);  
%% 画最终的结果 Kd是最终的城市序列
[~,idx]=sort(bestX);
idx=idx+1;
Kd(1)=1;
Kd(2:length(idx)+1)=idx;
Kd(length(idx)+2)=1;
%% 画路径图
figure
plot(data(Kd,1),data(Kd,2),'go','MarkerFaceColor','g')

2.3部分结果

算法得到的路径:1 > 6 > 9 > 12 > 23 > 7 > 25 > 22 > 17 > 18 > 4 > 16 > 27 > 15 > 13 > 8 > 28 > 21 > 5 > 26 > 29 > 3 > 2 > 10 > 19 > 11 > 14 > 20 > 24 > 1

算法求解的总路径总长:13873.9529

三、完整MATLAB代码

TSP:肺功能优化算法LPO求解旅行商问题TSP(可以更改数据),MATLAB代码

TSP:常春藤算法IVY求解旅行商问题TSP(可以更改数据),MATLAB代码

TSP:差异化创意搜索算法DCS求解旅行商问题TSP(可以更改数据),MATLAB代码

TSP:人工原生动物优化器(APO)求解旅行商问题TSP(可以更改数据),MATLAB代码

TSP:黑翅鸢算法BKA求解旅行商问题TSP(可以更改数据),MATLAB代码

这篇关于TSP:常春藤算法IVY求解旅行商问题TSP(可以更改数据),MATLAB代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070674

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第