本文主要是介绍【Reading List】【20190510】预训练(pre-trained)语言模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
RNN,seq2seq,Attention:
https://www.leiphone.com/news/201709/8tDpwklrKubaecTa.html
图解transformer :
https://blog.csdn.net/qq_41664845/article/details/84969266
Attentinon:
https://blog.csdn.net/malefactor/article/details/50550211
ELMO、GPT、BERT对比:
https://www.cnblogs.com/robert-dlut/p/9824346.html
GPT
官网:https://openai.com/blog/language-unsupervised/
解析:https://blog.csdn.net/Magical_Bubble/article/details/89497002
GPT2
官网:https://openai.com/blog/better-language-models/#update
解析:https://blog.csdn.net/Magical_Bubble/article/details/89499275
官方资源:https://github.com/openai/gpt-2
https://github.com/openai/gpt-2-output-dataset
git:https://github.com/oldyang95/GPT2-Models/
Tensorflow_GPU与Cuda对应关系:
https://blog.csdn.net/u011748542/article/details/85090268
论文:
(GPT)Improving Language Understanding by Generative Pre-Training
(GPT-2)Language Models are Unsupervised Multitask Learners
Attention Is All You Need
分享:Deep Graph Convolutional Encoders for Structured Data to Text Generation
这篇关于【Reading List】【20190510】预训练(pre-trained)语言模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!