TF-IDF(Term Frequency-Inverse Document Frequency)

2024-06-17 04:12

本文主要是介绍TF-IDF(Term Frequency-Inverse Document Frequency),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TF-IDF(Term Frequency-Inverse Document Frequency)是一种常用于信息检索和文本挖掘的统计方法,用以评估一个词语对于一个文件集或一个语料库中的其中一份文件的重要程度。它的重要性随着词语在文本中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF算法主要应用于关键词抽取、文档相似度计算和文本挖掘等领域。
以下是TF-IDF算法的基本步骤:

  1. 计算词频(TF)
    词频指的是某个词在文档中出现的次数。通常,我们会将词频与文档中总词数进行归一化处理,以避免偏向长的文档。归一化处理可以通过以下公式计算:
    T F ( t , d ) = 词 t 在文档 d 中的出现次数 文档 d 的总词数 TF(t, d) = \frac{\text{词} t \text{在文档} d \text{中的出现次数}}{\text{文档} d \text{的总词数}} TF(t,d)=文档d的总词数t在文档d中的出现次数
  2. 计算逆文档频率(IDF)
    逆文档频率是一个词语普遍重要性的度量。它反映了词语在语料库中的常见程度,计算公式为:
    I D F ( t ) = log ⁡ ( 语料库中的文档总数 1 + 包含词 t 的文档数 ) IDF(t) = \log\left(\frac{\text{语料库中的文档总数}}{1 + \text{包含词} t \text{的文档数}}\right) IDF(t)=log(1+包含词t的文档数语料库中的文档总数)
    其中,分母中的“1”是为了避免分母为零的情况。
  3. 计算TF-IDF权重
    最后,将词频与逆文档频率相乘,得到词语的TF-IDF权重,计算公式为:
    T F − I D F ( t , d ) = T F ( t , d ) × I D F ( t ) TF-IDF(t, d) = TF(t, d) \times IDF(t) TFIDF(t,d)=TF(t,d)×IDF(t)
    这个权重可以理解为词语在文档中的重要程度,同时也考虑了其在整个语料库中的普遍性。
    使用TF-IDF算法时,通常还会进行一些预处理步骤,比如去除停用词、词干提取、词性标注等,以提高算法的效果。
    Python中的scikit-learn库提供了TF-IDF算法的实现,使得用户可以方便地在项目中应用这一算法。以下是一个简单的使用scikit-learn进行TF-IDF权重计算的例子:
from sklearn.feature_extraction.text import TfidfVectorizer
# 文本数据
documents = ["这是一个好主意。","这是一个坏主意。","这个想法好极了。"
]
# 创建TF-IDF向量化器
vectorizer = TfidfVectorizer()
# 拟合并转换文本数据
X = vectorizer.fit_transform(documents)
# 查看词汇表
print("词汇表:", vectorizer.get_feature_names_out())
# 打印TF-IDF权重矩阵
print("TF-IDF权重矩阵:\n", X.toarray())

运行上述代码,会输出词汇表和每个词语在每个文档中的TF-IDF权重。
在实际应用中,TF-IDF算法有助于提取文档的关键词,理解文档内容,并且在搜索引擎、推荐系统、文本分类等领域中有着广泛的应用。
在这里插入图片描述

这篇关于TF-IDF(Term Frequency-Inverse Document Frequency)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068449

相关文章

JavaScript中document.cookie

“某些 Web 站点在您的硬盘上用很小的文本文件存储了一些信息,这些文件就称为 Cookie。”—— MSIE 帮助。一般来说,Cookies 是 CGI 或类似,比 HTML 高级的文件、程序等创建的,但是 javascript 也提供了对 Cookies 的很全面的访问权利。       每个 Cookie 都是这样的:<cookie名>=<值>   <cookie名>的限制与 javasc

Chapter 10 Stability and Frequency Compensation

Chapter 10 Stability and Frequency Compensation Chapter 8介绍了负反馈, 这一章介绍稳定性, 如果设计不好, 负反馈系统是要发生震荡的. 首先我们学习理解稳定判断标准和条件, 然后学习频率补偿, 介绍适用于不同运放的补偿方式, 同时介绍不同补偿对两级运放slew rate的影响, 最后介绍Nyquist’s判断标准 10.1 Gener

WIN11 ESP32 IDF + VSCODE 环境搭建[教程向]

前言 目录 前言 安装ESP32-IDF VSCODE插件安装 编译测试 很多时候我们想学习一门新的技能,需要使用全新的开发环境,很多时候我们会在安装环境这个环节卡住很久,这里简单介绍一下ESP32+VSCODE环境搭建。 安装ESP32-IDF https://dl.espressif.cn/dl/esp-idf/?idf=4.4 直接复制上面链接,进入idf下载界面。

【深度学习 走进tensorflow2.0】TensorFlow 2.0 常用模块tf.config

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 本篇文章将会教大家如何 合理分配显卡资源,设置显存使用策略。主要使用tf.config模块进行设置。下面我们一起了解下具体用法和例子。 一、指定当前程序使用的 GPU 例如,在一台具有 4 块 GPU 和一个 C

Spring源码学习--获取Document

Spring在容器的基本实现流程中会涉及到关于xml文件操作,在这里跟踪一下源码,看一下spring在解析xml文件之前,对xml的Document是怎么获取的。 一、DefaultDocumentLoader 在Spring中XmlBeanFactoryReader类对于文档的读取并没有亲自去做加载,而是委托给DocumentLoader去执行,其中DocumentLoader只

【硬刚ES】ES入门 (13)Java API 操作(4)DQL(1) 请求体查询/term 查询,查询条件为关键字/分页查询/数据排序/过滤字段/Bool 查询/范围查询/模糊查询/高亮查询/聚合查

本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的ES部分补充。 1 请求体查询 2 高亮查询 3 聚合查询 package com.atguigu.es.test;import org.apache.http.HttpHost;import org.apache.lucene.search.TotalHits;import org.elasticse

mongodb document使用的数据结构中存在List结构导致查询速度异常缓慢

最近使用的mongodb 数据库,项目中查询某个列表异常缓慢,甚至造成cpu突然上升,后经过排查,发现  ,因为文档中存在List结构的数据,所以造成查询异常缓慢,以后使用mongodb数据库的项目,慎用list结构,一部小心就是一个大坑

org.springframework.beans.factory.xml.XmlBeanDefinitionStoreException: Line 24 in XML document from

org.springframework.beans.factory.xml.XmlBeanDefinitionStoreException: Line 24 in XML document from class path resource [bean1.xml] is invalid; nested exception is org.xml.sax.SAXParseException; lineN

$(document).ready(function(){})和$().ready(function(){})和$(function(){})的区别

$(document).ready(function(){}) 和$().ready(function(){}) 和$(function(){})的区别有那些呢???? 以上三个语法全部是等价的: 还有$(document).bind("ready", handler)。该方法在从 jQuery 1.8 开始不再建议使用。这种用法的行为和 ready 方法类似,只有一点不同

function 报错 Uncaught ReferenceError: fuzzySearch is not defined用$(document).ready(function(){ })里面的

这个情况就有点坑了 ,小胖哥看了都说写法没大问题,后面觉得把 function 函数弄出去的话试下,果然可以了!!!  $(document).ready(function(){ })里面的 function 报错 Uncaught ReferenceError: fuzzySearch is not defined 先来图看看,第一张图跟 第二张图 看起来代码写的很规矩?