【自动驾驶/opencv】32.交通灯颜色提取的难点

2024-06-16 21:08

本文主要是介绍【自动驾驶/opencv】32.交通灯颜色提取的难点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

交通灯颜色识别有难点,因为很多时候,颜色会因为环境而变化,例如下面的红灯,下图不用理会右边的交通灯,因为我调试程序中是限定了id==8641只分析左边这个,所以右边这个没进行处理。

在这里插入图片描述
上图左边是向左的箭头灯,右边是向右的箭头。但是使用颜色空间进行提取颜色时,这箭头很亮的部分,其实已经接近白色了,所以就提取不到红色了。

这张图是截取亮灯中心带一点周边的图像:
在这里插入图片描述
下面这张图是截取亮灯中心的图像:【注意,这里我已经附图了,因为很接近白色,所以人眼不太能看出来,你可以把鼠标移动到下面中心位置的部分,就会出现一个放大镜的+,这就是图片】
在这里插入图片描述
我们人眼之所以还能觉得它是红色,是因为箭头周边,亮度没那么强的部分还能看出是红色,想把这接近白色的部分提取出红色,自然就不太可能了。

如下图,是用我另一篇博客HSV提取RBG各种颜色c++代码来提取红色得到的图片。可以看出,红色亮灯区域并没提取出来,只有周边的红色部分提取出来了:
在这里插入图片描述


如果从相机isp方面无法继续优化,那么就只能从其他颜色以外的角度想办法来解决了。


下面的方法不是使用hsv提取颜色,所以和上面的HSV方法有所差异:

void ExtractGreenLight(cv::Mat src_img, cv::Mat &dst_img) {std::vector<cv::Mat> Src_Mat_part(src_img.channels());cv::split(src_img, Src_Mat_part);cv::Mat img_green, img_red;img_green = Src_Mat_part[1].clone();img_red = Src_Mat_part[2].clone();dst_img = img_green - img_red;
}void ExtractRedLight(cv::Mat src_img, cv::Mat &dst_img) {std::vector<cv::Mat> Src_Mat_part(src_img.channels());cv::split(src_img, Src_Mat_part);cv::Mat img_blue, img_red, img_green;img_blue = Src_Mat_part[0].clone();img_green = Src_Mat_part[1].clone();img_red = Src_Mat_part[2].clone();dst_img = cv::max(img_green, img_red) - cv::min(img_green, img_blue);// dst_img = img_red - cv::min(img_green,img_blue);// dst_img = 2 * img_red - img_blue - 220;
}

上面两个函数的输出是灰度图像,分别为只包含红(黄)色和只包含绿色的图像。代码提取红色的函数提取的是红色和黄色一起提取出来,然后利用红黄色在交通灯的上下位置来区分红色和黄色。提取绿色的函数就是只提取绿色。

当然,由于我们可以由目标检测得到交通灯的box位置,所以可以得到只包含交通灯的roi图片,对这roi图片进行颜色提取,可以得到下面这张灰度图:
在这里插入图片描述
可以看出,我们能够利用强光周围的红色,也能找到亮灯区域,只不过,此时亮灯区域是提取不了红色,所以图中亮灯区域的左箭头显示为黑色。
对上面灰度图进行二值化,可以得到下面这张图,下图的边界框是我画出来的,不是二值化后得到的框。然后再找轮廓,找到亮灯区域的box。最后再根据找到的box截取出亮灯区域的roi图片。
在这里插入图片描述
不过,这种情况下的亮灯人眼看着都很模糊,机器想要正确识别也不容易。


在这种情况下,可以特殊情况特殊处理,以下是我的一个思路:
先提取出交通灯图片最亮的部分,然后再二值化求轮廓,找出最小外接正矩形 cv::Rect roi = cv::boundingRect(contours[i]);就是亮灯区域的位置,根据最小外接正矩形在交通灯的位置来分类是红色黄色、或者绿色。一个交通灯的上中下三个亮灯区域依次是是绿
当然,对于不是这种交通灯的,该方法就不适用了,毕竟这种方法没有使用颜色空间,并不能真正从颜色角度提取颜色。

更多细节请跳转。

这篇关于【自动驾驶/opencv】32.交通灯颜色提取的难点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067550

相关文章

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(