TF-IDF在现代搜索引擎优化策略中的作用

2024-06-16 15:36

本文主要是介绍TF-IDF在现代搜索引擎优化策略中的作用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于文本挖掘和信息检索的统计方法,用来评估一个词语对于一个文档或一个语料库的重要程度。TF-IDF算法结合了词频(TF)和逆文档频率(IDF)两个指标,既考虑了词语在单个文档中的出现频率,也考虑了词语在整个语料库中的普遍性。

1. 术语解释

1.1 词频(TF)

词频(Term Frequency)是指一个词在文档中出现的频率。如果一个词经常出现,它就一定很重要,对吗?并非总是如此!像 “and”、"the "和 "is "这样的词在英语中经常出现,但它们并不能说明文档的内容。这就是 IDF 的作用所在。

tf(t,d) = count of t in d / number of words in d

1.2 逆文档频率(IDF)

逆文档频率(Inverse Document Frequency)用来衡量词语在整个语料库中的普遍性。词语出现得越频繁,其信息量越小,反之,出现得越少,其信息量越大。

在这里插入图片描述

2. TF-IDF计算

TF-IDF值是TF和IDF的乘积,用来衡量词语的重要性。公式如下:

TF-IDF(t,d,D)=TF(t,d)×IDF(t,D)

3. 示例

假设我们有如下三个文档:

  • 文档1:我喜欢看电影
  • 文档2:我不喜欢看电影
  • 文档3:我喜欢看书

首先,我们计算每个文档中词语的词频(TF):

词语文档1 TF文档2 TF文档3 TF
1/41/41/4
喜欢1/41/41/4
1/41/41/4
电影1/41/40
01/40
001/4

接着,我们计算每个词语的逆文档频率(IDF):

词语出现文档数IDF
3log⁡(3/3)=0\log(3/3) = 0log(3/3)=0
喜欢3log⁡(3/3)=0\log(3/3) = 0log(3/3)=0
3log⁡(3/3)=0\log(3/3) = 0log(3/3)=0
电影2log⁡(3/2)≈0.176\log(3/2) \approx 0.176log(3/2)0.176
1log⁡(3/1)≈1.098\log(3/1) \approx 1.098log(3/1)1.098
1log⁡(3/1)≈1.098\log(3/1) \approx 1.098log(3/1)1.098

最后,我们计算TF-IDF值:

词语文档1 TF-IDF文档2 TF-IDF文档3 TF-IDF
000
喜欢000
000
电影1/4×0.176≈0.0441/4 \times 0.176 \approx 0.0441/4×0.1760.0441/4×0.176≈0.0441/4 \times 0.176 \approx 0.0441/4×0.1760.0440
01/4×1.098≈0.2751/4 \times 1.098 \approx 0.2751/4×1.0980.2750
001/4×1.098≈0.2751/4 \times 1.098 \approx 0.2751/4×1.0980.275

4. 代码

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> from sklearn.pipeline import Pipeline
>>> corpus = ['this is the first document',
...          'this document is the second document',
...          'and this is the third one',
...          'is this the first document']
>>> vocabulary = ['this', 'document', 'first', 'is', 'second', 'the',
...              'and', 'one']
>>> pipe = Pipeline([('count', CountVectorizer(vocabulary=vocabulary)),
...                 ('tfid', TfidfTransformer())]).fit(corpus)
>>> pipe['count'].transform(corpus).toarray()
array([[1, 1, 1, 1, 0, 1, 0, 0],[1, 2, 0, 1, 1, 1, 0, 0],[1, 0, 0, 1, 0, 1, 1, 1],[1, 1, 1, 1, 0, 1, 0, 0]])
>>> pipe['tfid'].idf_
array([1.        , 1.22314355, 1.51082562, 1.        , 1.91629073,1.        , 1.91629073, 1.91629073])
>>> pipe.transform(corpus).shape
(4, 8)

参考 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html

5. 应用场景

  • 信息检索:通过TF-IDF算法可以提升搜索引擎的搜索结果质量,使得相关性高的文档排在前面。
  • 文本分类:作为文本特征提取的方法,TF-IDF在文本分类中有广泛应用。
  • 推荐系统:结合用户的历史记录和文档的TF-IDF值,推荐系统可以向用户推荐更符合其兴趣的内容。

6. 优缺点

优点

  • 简单易实现: TF-IDF算法计算简单,易于实现。
  • 有效性: 在许多文本挖掘和信息检索任务中,TF-IDF算法表现良好。

缺点

  • 忽略词序和语义: TF-IDF只考虑词频和逆文档频率,忽略了词语的顺序和上下文语义。
  • 高维稀疏性: 在大型语料库中,TF-IDF矩阵会非常稀疏,计算和存储成本较高。

7. 总结

TF-IDF算法是一种经典且广泛使用的文本特征提取方法,尽管有一些局限性,但在许多实际应用中依然表现良好。理解和掌握TF-IDF算法对于从事自然语言处理和信息检索领域的研究人员和工程师来说,是非常重要的。

我会定期在CSDN分享我的学习心得,项目经验和行业动态。如果你对某个领域感兴趣,或者想要了解更多技术干货,请关注我的账号,一起成长!

这篇关于TF-IDF在现代搜索引擎优化策略中的作用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066836

相关文章

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份