本文主要是介绍tf.layers.conv1d函数解析(一维卷积),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一维卷积一般用于处理文本,所以输入一般是一段长文本,就是词的列表
函数定义如下:
tf.layers.conv1d(
inputs,
filters,
kernel_size,
strides=1,
padding='valid',
data_format='channels_last',
dilation_rate=1,
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=tf.zeros_initializer(),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
trainable=True,
name=None,
reuse=None
)
比较重要的几个参数是inputs, filters, kernel_size,下面分别说明
inputs : 输入tensor, 维度(None, a, b) 是一个三维的tensor
None : 一般是填充样本的个数,batch_size
a : 句子中的词数或者字数
b : 字或者词的向量维度
filters : 过滤器的个数
kernel_size : 卷积核的大小,卷积核其实应该是一个二维的,这里只需要指定一维,是因为卷积核的第二维与输入的词向量维度是一致的,因为对于句子而言,卷积的移动方向只能是沿着词的方向,即只能在列维度移动
一个例子:
inputs = tf.placeholder('float', shape=[None, 6, 8])
out = tf.layers.conv1d(inputs, 5, 3)
说明: 对于一个样本而言,句子长度为6个字,字向量的维度为8
filters=5, kernel_size=3, 所以卷积核的维度为3*8
那么输入6*8经过3*8的卷积核卷积后得到的是4*1的一个向量(4=6-3+1)
又因为有5个过滤器,所以是得到5个4*1的向量
画图如下:
这篇关于tf.layers.conv1d函数解析(一维卷积)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!