【刷力扣】23. 合并 K 个升序链表(dummy节点技巧 + 分治思维 + 优先队列)

本文主要是介绍【刷力扣】23. 合并 K 个升序链表(dummy节点技巧 + 分治思维 + 优先队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、合并升序链表问题
  • 二、题目:[21. 合并两个有序链表](https://leetcode.cn/problems/merge-two-sorted-lists/description/)
    • 1、掌握dummy节点的技巧
  • 三、题目:[23. 合并 K 个升序链表](https://leetcode.cn/problems/merge-k-sorted-lists/description/)
    • 1、分治思维
      • 1.1 插曲
      • 1.2 [代码](https://leetcode.cn/problems/merge-k-sorted-lists/solutions/2811116/jiang-kge-sheng-xu-lian-biao-zhuan-cheng-yffa/)
      • 1.3 分析这种解法的时空复杂度
        • 1.3.1 时间复杂度
        • 1.3.2 空间复杂度
    • 2、优先队列
      • 2.1 PriorityQueue的使用
      • 2.2 本题代码
        • 2.2.1 进一步优化
      • 2.3 分析这种解法的时空复杂度
        • 2.3.1 时间复杂度
        • 2.3.2 空间复杂度

一、合并升序链表问题

  • 合并升序链表问题是链表专题的经典问题。
    • 我们需要掌握:dummy节点的技巧
  • 23. 合并 K 个升序链表在21. 合并两个有序链表基础上,还需要掌握如下技能:
    • (1)分治思维。我们将合并K个升序链表转化为多次合并2个升序链表。归并排序也用到了分治思维。
    • (2)优先队列(小根堆/大根堆)。维护一个序列的最小/大值。

二、题目:21. 合并两个有序链表

1、掌握dummy节点的技巧

  • 在创建新链表时,定义一个dummy节点,在如下代码中,res便是dummy节点,因此,最后答案是:return res.next;
/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeTwoLists(ListNode list1, ListNode list2) {if (list1 == null) {return list2;}if (list2 == null) {return list1;}ListNode p1 = list1, p2 = list2, res = new ListNode(), p = res;while (p1 != null && p2 != null) {if (p1.val <= p2.val) {p.next = p1;p1 = p1.next;} else {p.next = p2;p2 = p2.next;}p = p.next;}if (p1 == null) {p.next = p2;}if (p2 == null) {p.next = p1;}return res.next;}
}

三、题目:23. 合并 K 个升序链表

1、分治思维

1.1 插曲

  • 看到这道题,首先想到的是合并2个升序链表。p1指向链表list1,p2指向链表list2。关键步骤是:
if (p1.val <= p2.val) {...
} else {...
}
  • 很显然,k个升序链表需要想其他办法去求最小值对应的节点。好久没刷算法了。不记得咋求了…(忘记优先队列了,要补上这个技术点)
  • 但想到了归并排序。所以,可以将k个升序链表转成2个升序链表的问题。

1.2 代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) return null;return merge(lists, 0, lists.length - 1);}private ListNode merge(ListNode[] lists, int i, int j) {if (i == j) {return lists[i];}if (j - i == 1) {// 两条链表的合并return merge2Lists(lists[i], lists[j]);}int mid = ((j - i) >> 1) + i;ListNode leftList = merge(lists, i, mid);ListNode rightList = merge(lists, mid + 1, j);// 两条链表的合并return merge2Lists(leftList, rightList);}private ListNode merge2Lists(ListNode l1, ListNode l2) {ListNode dummy = new ListNode(), p = dummy;while (l1 != null && l2 != null) {if (l1.val <= l2.val) {p.next = l1;l1 = l1.next;} else {p.next = l2;l2 = l2.next;}p = p.next;}if (l1 == null) {p.next = l2;}if (l2 == null) {p.next = l1;}return dummy.next;}
}

1.3 分析这种解法的时空复杂度

1.3.1 时间复杂度
  • 图示:4个链表,两两合并的过程。为便于分析,假设每个链表的节点树为a。
    在这里插入图片描述
  • i = 1:有 k 2 \tfrac{k}{2} 2k对合并,每对合并涉及2a个节点。
  • i = 2:有 k 4 \tfrac{k}{4} 4k对合并,每对合并涉及4a个节点。
  • 每一层的计算: k 2 i \tfrac{k}{2 ^ i} 2ik * 2 i ∗ a 2^i *a 2ia = k ∗ a k * a ka
  • 层数为树高:叶子节点为k(k个链表),树高为logk。
  • 因此,时间复杂度为:O(aklogk)。k个链表一共有n个节点,所以,a简化为 n k \tfrac{n}{k} kn时间复杂度简化为:O(nlogk)
1.3.2 空间复杂度
  • 递归调用,栈深度为树高,因此,空间复杂度为O(logk)

2、优先队列

  • 给定一组元素,使得队列的头是最小/大元素。

2.1 PriorityQueue的使用

public class Main {public static void main(String[] args) {ListNode listNode1 = new ListNode(2);ListNode listNode2 = new ListNode(1);listNode1.setNext(listNode2);// 小根堆Queue<ListNode> queue = new PriorityQueue<>(Comparator.comparingInt(ListNode::getVal));// 将指定的元素插入到此优先级队列中。(相当于offer()方法)queue.add(listNode1);queue.add(listNode2);while (!queue.isEmpty()) {// 检索并删除此队列的头,如果此队列为空,则返回 null 。System.out.println(queue.poll());}}
}/*
ListNode(val=1, next=null) 
ListNode(val=2, next=ListNode(val=1, next=null))
*/
  • 既然要对元素进行排序,要么元素的类实现了Comparable接口(这个要求较高),要么就传入一个自定义的Comparator(这个更灵活)。

2.2 本题代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) {return null;}ListNode dummy = new ListNode(), p = dummy;Queue<ListNode> queue = new PriorityQueue<>((node1, node2) -> node1.val - node2.val);for (int i = 0; i < lists.length; i++) {if (lists[i] != null) {ListNode tmp = lists[i];while (tmp != null) {queue.add(tmp);tmp = tmp.next;}}}while (!queue.isEmpty()) {ListNode node = queue.poll();p.next = node;p = p.next;}p.next = null; // 合并升序链表问题,别忘了处理尾节点,否则链表可能成环。return dummy.next;}
}
2.2.1 进一步优化

没必要一次性将所有node都加入优先队列。

class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) {return null;}ListNode dummy = new ListNode(), p = dummy;Queue<ListNode> queue = new PriorityQueue<>(lists.length, (node1, node2) -> node1.val - node2.val);for (ListNode head : lists) {if (head != null) {queue.offer(head);}}while (!queue.isEmpty()) {ListNode node = queue.poll();p.next = node;p = p.next;if (node.next != null) {queue.offer(node.next);}}p.next = null;return dummy.next;}
}

2.3 分析这种解法的时空复杂度

2.3.1 时间复杂度
  • 一个k个链表,总共有n个节点。
  • 每个节点都会offer和poll优先队列各一次。
  • 每次的时间复杂度为O(logk):队列中最多k个元素,组成的树高为logk。

我们这里用到的优先队列,本质是小根堆,即一种特殊的完全二叉树。一棵由k个元素组成的完全二叉树,其树高为logk。

  • 因此,时间复杂度为O(nlogk)
2.3.2 空间复杂度
  • 队列中最多k个元素,因此空间复杂度为O(k)

这篇关于【刷力扣】23. 合并 K 个升序链表(dummy节点技巧 + 分治思维 + 优先队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065668

相关文章

电脑win32spl.dll文件丢失咋办? win32spl.dll丢失无法连接打印机修复技巧

《电脑win32spl.dll文件丢失咋办?win32spl.dll丢失无法连接打印机修复技巧》电脑突然提示win32spl.dll文件丢失,打印机死活连不上,今天就来给大家详细讲解一下这个问题的解... 不知道大家在使用电脑的时候是否遇到过关于win32spl.dll文件丢失的问题,win32spl.dl

Python实现合并与拆分多个PDF文档中的指定页

《Python实现合并与拆分多个PDF文档中的指定页》这篇文章主要为大家详细介绍了如何使用Python实现将多个PDF文档中的指定页合并生成新的PDF以及拆分PDF,感兴趣的小伙伴可以参考一下... 安装所需要的库pip install PyPDF2 -i https://pypi.tuna.tsingh

电脑报错cxcore100.dll丢失怎么办? 多种免费修复缺失的cxcore100.dll文件的技巧

《电脑报错cxcore100.dll丢失怎么办?多种免费修复缺失的cxcore100.dll文件的技巧》你是否也遇到过“由于找不到cxcore100.dll,无法继续执行代码,重新安装程序可能会解... 当电脑报错“cxcore100.dll未找到”时,这通常意味着系统无法找到或加载这编程个必要的动态链接库

如何关闭 Mac 触发角功能或设置修饰键? mac电脑防止误触设置技巧

《如何关闭Mac触发角功能或设置修饰键?mac电脑防止误触设置技巧》从Windows换到iOS大半年来,触发角是我觉得值得吹爆的MacBook效率神器,成为一大说服理由,下面我们就来看看mac电... MAC 的「触发角」功能虽然提高了效率,但过于灵敏也让不少用户感到头疼。特别是在关键时刻,一不小心就可能触

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring

Apache伪静态(Rewrite).htaccess文件详解与配置技巧

《Apache伪静态(Rewrite).htaccess文件详解与配置技巧》Apache伪静态(Rewrite).htaccess是一个纯文本文件,它里面存放着Apache服务器配置相关的指令,主要的... 一、.htAccess的基本作用.htaccess是一个纯文本文件,它里面存放着Apache服务器

Spring中@Lazy注解的使用技巧与实例解析

《Spring中@Lazy注解的使用技巧与实例解析》@Lazy注解在Spring框架中用于延迟Bean的初始化,优化应用启动性能,它不仅适用于@Bean和@Component,还可以用于注入点,通过将... 目录一、@Lazy注解的作用(一)延迟Bean的初始化(二)与@Autowired结合使用二、实例解