【刷力扣】23. 合并 K 个升序链表(dummy节点技巧 + 分治思维 + 优先队列)

本文主要是介绍【刷力扣】23. 合并 K 个升序链表(dummy节点技巧 + 分治思维 + 优先队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、合并升序链表问题
  • 二、题目:[21. 合并两个有序链表](https://leetcode.cn/problems/merge-two-sorted-lists/description/)
    • 1、掌握dummy节点的技巧
  • 三、题目:[23. 合并 K 个升序链表](https://leetcode.cn/problems/merge-k-sorted-lists/description/)
    • 1、分治思维
      • 1.1 插曲
      • 1.2 [代码](https://leetcode.cn/problems/merge-k-sorted-lists/solutions/2811116/jiang-kge-sheng-xu-lian-biao-zhuan-cheng-yffa/)
      • 1.3 分析这种解法的时空复杂度
        • 1.3.1 时间复杂度
        • 1.3.2 空间复杂度
    • 2、优先队列
      • 2.1 PriorityQueue的使用
      • 2.2 本题代码
        • 2.2.1 进一步优化
      • 2.3 分析这种解法的时空复杂度
        • 2.3.1 时间复杂度
        • 2.3.2 空间复杂度

一、合并升序链表问题

  • 合并升序链表问题是链表专题的经典问题。
    • 我们需要掌握:dummy节点的技巧
  • 23. 合并 K 个升序链表在21. 合并两个有序链表基础上,还需要掌握如下技能:
    • (1)分治思维。我们将合并K个升序链表转化为多次合并2个升序链表。归并排序也用到了分治思维。
    • (2)优先队列(小根堆/大根堆)。维护一个序列的最小/大值。

二、题目:21. 合并两个有序链表

1、掌握dummy节点的技巧

  • 在创建新链表时,定义一个dummy节点,在如下代码中,res便是dummy节点,因此,最后答案是:return res.next;
/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeTwoLists(ListNode list1, ListNode list2) {if (list1 == null) {return list2;}if (list2 == null) {return list1;}ListNode p1 = list1, p2 = list2, res = new ListNode(), p = res;while (p1 != null && p2 != null) {if (p1.val <= p2.val) {p.next = p1;p1 = p1.next;} else {p.next = p2;p2 = p2.next;}p = p.next;}if (p1 == null) {p.next = p2;}if (p2 == null) {p.next = p1;}return res.next;}
}

三、题目:23. 合并 K 个升序链表

1、分治思维

1.1 插曲

  • 看到这道题,首先想到的是合并2个升序链表。p1指向链表list1,p2指向链表list2。关键步骤是:
if (p1.val <= p2.val) {...
} else {...
}
  • 很显然,k个升序链表需要想其他办法去求最小值对应的节点。好久没刷算法了。不记得咋求了…(忘记优先队列了,要补上这个技术点)
  • 但想到了归并排序。所以,可以将k个升序链表转成2个升序链表的问题。

1.2 代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) return null;return merge(lists, 0, lists.length - 1);}private ListNode merge(ListNode[] lists, int i, int j) {if (i == j) {return lists[i];}if (j - i == 1) {// 两条链表的合并return merge2Lists(lists[i], lists[j]);}int mid = ((j - i) >> 1) + i;ListNode leftList = merge(lists, i, mid);ListNode rightList = merge(lists, mid + 1, j);// 两条链表的合并return merge2Lists(leftList, rightList);}private ListNode merge2Lists(ListNode l1, ListNode l2) {ListNode dummy = new ListNode(), p = dummy;while (l1 != null && l2 != null) {if (l1.val <= l2.val) {p.next = l1;l1 = l1.next;} else {p.next = l2;l2 = l2.next;}p = p.next;}if (l1 == null) {p.next = l2;}if (l2 == null) {p.next = l1;}return dummy.next;}
}

1.3 分析这种解法的时空复杂度

1.3.1 时间复杂度
  • 图示:4个链表,两两合并的过程。为便于分析,假设每个链表的节点树为a。
    在这里插入图片描述
  • i = 1:有 k 2 \tfrac{k}{2} 2k对合并,每对合并涉及2a个节点。
  • i = 2:有 k 4 \tfrac{k}{4} 4k对合并,每对合并涉及4a个节点。
  • 每一层的计算: k 2 i \tfrac{k}{2 ^ i} 2ik * 2 i ∗ a 2^i *a 2ia = k ∗ a k * a ka
  • 层数为树高:叶子节点为k(k个链表),树高为logk。
  • 因此,时间复杂度为:O(aklogk)。k个链表一共有n个节点,所以,a简化为 n k \tfrac{n}{k} kn时间复杂度简化为:O(nlogk)
1.3.2 空间复杂度
  • 递归调用,栈深度为树高,因此,空间复杂度为O(logk)

2、优先队列

  • 给定一组元素,使得队列的头是最小/大元素。

2.1 PriorityQueue的使用

public class Main {public static void main(String[] args) {ListNode listNode1 = new ListNode(2);ListNode listNode2 = new ListNode(1);listNode1.setNext(listNode2);// 小根堆Queue<ListNode> queue = new PriorityQueue<>(Comparator.comparingInt(ListNode::getVal));// 将指定的元素插入到此优先级队列中。(相当于offer()方法)queue.add(listNode1);queue.add(listNode2);while (!queue.isEmpty()) {// 检索并删除此队列的头,如果此队列为空,则返回 null 。System.out.println(queue.poll());}}
}/*
ListNode(val=1, next=null) 
ListNode(val=2, next=ListNode(val=1, next=null))
*/
  • 既然要对元素进行排序,要么元素的类实现了Comparable接口(这个要求较高),要么就传入一个自定义的Comparator(这个更灵活)。

2.2 本题代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) {return null;}ListNode dummy = new ListNode(), p = dummy;Queue<ListNode> queue = new PriorityQueue<>((node1, node2) -> node1.val - node2.val);for (int i = 0; i < lists.length; i++) {if (lists[i] != null) {ListNode tmp = lists[i];while (tmp != null) {queue.add(tmp);tmp = tmp.next;}}}while (!queue.isEmpty()) {ListNode node = queue.poll();p.next = node;p = p.next;}p.next = null; // 合并升序链表问题,别忘了处理尾节点,否则链表可能成环。return dummy.next;}
}
2.2.1 进一步优化

没必要一次性将所有node都加入优先队列。

class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) {return null;}ListNode dummy = new ListNode(), p = dummy;Queue<ListNode> queue = new PriorityQueue<>(lists.length, (node1, node2) -> node1.val - node2.val);for (ListNode head : lists) {if (head != null) {queue.offer(head);}}while (!queue.isEmpty()) {ListNode node = queue.poll();p.next = node;p = p.next;if (node.next != null) {queue.offer(node.next);}}p.next = null;return dummy.next;}
}

2.3 分析这种解法的时空复杂度

2.3.1 时间复杂度
  • 一个k个链表,总共有n个节点。
  • 每个节点都会offer和poll优先队列各一次。
  • 每次的时间复杂度为O(logk):队列中最多k个元素,组成的树高为logk。

我们这里用到的优先队列,本质是小根堆,即一种特殊的完全二叉树。一棵由k个元素组成的完全二叉树,其树高为logk。

  • 因此,时间复杂度为O(nlogk)
2.3.2 空间复杂度
  • 队列中最多k个元素,因此空间复杂度为O(k)

这篇关于【刷力扣】23. 合并 K 个升序链表(dummy节点技巧 + 分治思维 + 优先队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065668

相关文章

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Python视频剪辑合并操作的实现示例

《Python视频剪辑合并操作的实现示例》很多人在创作视频时都需要进行剪辑,本文主要介绍了Python视频剪辑合并操作的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录介绍安装FFmpegWindowsMACOS安装MoviePy剪切视频合并视频转换视频结论介绍

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表