机器学习逻辑回归模型总结——从原理到sklearn实践

2024-06-16 03:32

本文主要是介绍机器学习逻辑回归模型总结——从原理到sklearn实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0x00 基本原理

逻辑回归算法,从名字上看似乎是个回归问题,但实际上逻辑回归是个典型的分类算法。
对于分类问题,一般都是一些离散变量,且y的取值如下:

y{0,1,2,3,...,n}
,显然不能使用线性回归拟合。
以二元分类问题开始讨论,y的取值为“类别1,类别2”,为了表示清楚,这里使用0和1来表示二元分类中的两个类别,即y的取值为: y{0,1}
和线性回归问题一样,我们规定假设函数为: hθ(x) ,设置取值范围: 0hθ(x)1 ,因为我们希望算法得出的结果取值非0即1,所以还要设置一个阈值,如果得出的概率大于这个阈值,则假设函数输出1,否则输出0。
在逻辑回归中,实际上对于假设函数,使用了一种逻辑函数的概念,函数如下:
hθ(x)=11+eθTx

称为S型函数,或者逻辑函数。取值范围为(0,1),符合我们上面对假设函数的要求。通常,设置阈值为0.5,如果训练样本输入到假设函数中,得到的值大于0.5,则认为分类为1,否则分类为0:
P(y=0|x;θ)+P(y=1|x;θ)=1

相应的,我们的损失函数(Cost Function)为:
J(θ)=1mi=1m12(hθ(x(i))y(i))2

如果这里计算折损的形式还是和线性回归一样平方损失函数: mi=112(hθ(x(i))y(i))2 ,实际上,在求minJ的时候,对于J函数,我们很可能得出的不是凸函数的形式,这样再使用梯度下降算法时,会陷入至局部最优解中,很难找到全局最优解。
所以在计算折损值的时候,逻辑回归中使用了对数损失函数来获得一个凸函数的J,整理得到的最终损失函数形式如下,其中省略了若干数学推导:

我们再次使用梯度下降算法来求出最优的参数向量,梯度下降在逻辑回归中表现如下:

可能有人发现,这不和线性拟合问题中的梯度下降公式一样吗?实际上,由于逻辑回归模型中采用了逻辑函数来表示假设函数,所以这两种模型中的梯度下降表达式是完全不同的两回事儿。
有了梯度下降算法,我们就可以使用训练集来求出最优的参数向量。逻辑回归中,为了消除过度拟合问题,有正则化方法,这里就不再赘述。

0x01 算法实现

根据Andrew Ng所提供的资料,我们依旧选择Octave来实现逻辑回归算法。
首先是sigmoid函数(逻辑函数)的表达:

function g = sigmoid(z)
g = zeros(size(z));
g = 1 ./ (1+exp(-z));
end

Cost Function的实现:

function [J, grad] = costFunction(theta, X, y)
% 初始化
m = length(y);
J = 0;
grad = zeros(size(theta));% 损失函数的计算
temp = sigmoid(X*theta);
temp = temp(:,size(temp, 2));
J = (1/m) * sum((-y.*log(temp))-((1-y).*log(1-temp))) ;% 损失函数的导数计算
for i=1:size(theta,1),grad(i) = (1/m) * sum((temp - y).*X(:,i));
end;
end

由于资料中所给的不是直接使用梯度下降算法,而是使用了Octave中的优化方法来求最优参数向量,所以只需要返回损失函数J和各个损失函数的导数grad。实际上,如果改成直接使用梯度下降的话,只需要在求grad的过程中,同步更新我们各个参数即可。
预测函数如下,这里一般选择阈值为0.5,所以大于0.5的假设函数返回值,我们就判断类别为1。

function p = predict(theta, X)
m = size(X, 1); 
p = zeros(m, 1);% 计算类别,使用p向量返回
for i=1:m,prop = sigmoid(X(i,:)*theta) ;if prop >= 0.5,p(i) = 1;end;
end;
end;

0x02 算法运行

运行算法,可以看到可视化的决策边界:

0x03 sklearn库实践

清楚了逻辑回归模型的原理,我们使用python进行机器学习演练,使用sklearn机器学习库,可以很方便地进行实践。
数据集为学生的两次考试成绩以及是否通过大学申请,我们用逻辑回归进行分类,以后给出一个样本,输出成功通过大学申请的概率。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report 
from sklearn.metrics import precision_recall_curve, roc_curve, auc data = pd.read_csv('ex2data1.txt', sep=',', \skiprows=[2], names=['score1','score2','result'])
score_data = data.loc[:,['score1','score2']]
result_data = data.resultp = 0
for i in xrange(10):x_train, x_test, y_train, y_test = \train_test_split(score_data, result_data, test_size = 0.2)model = LogisticRegression(C=1e9)model.fit(x_train, y_train)predict_y = model.predict(x_test)p += np.mean(predict_y == y_test)# 绘制图像
pos_data = data[data.result == 1].loc[:,['score1','score2']]
neg_data = data[data.result == 0].loc[:,['score1','score2']]h = 0.02
x_min, x_max = score_data.loc[:, ['score1']].min() - .5, score_data.loc[:, ['score1']].max() + .5
y_min, y_max = score_data.loc[:, ['score2']].min() - .5, score_data.loc[:, ['score2']].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])# 绘制边界和散点
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
plt.scatter(x=pos_data.score1, y=pos_data.score2, color='black', marker='o')
plt.scatter(x=neg_data.score1, y=neg_data.score2, color='red', marker='*')plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.show()# 模型表现
answer = model.predict_proba(x_test)[:,1]  
precision, recall, thresholds = precision_recall_curve(y_test, answer)      
report = answer > 0.5  
print(classification_report(y_test, report, target_names = ['neg', 'pos']))  
print("average precision:", p/100)  

运行结果如下:

画出了决策边界之后,就可以看到我们最后的分类结果。
当然也可以使用precision_call_curve方法自动计算召回率精度等数据:

               precision    recall  f1-score   supportneg       0.88      0.88      0.88         8pos       0.92      0.92      0.92        12avg / total       0.90      0.90      0.90        20
('average precision:', 0.089999999999999997)

精度达到了90%,模型效果还不错。

0x04 总结

逻辑回归模型实际上是一个典型的监督学习分类算法,配合sklearn库可以很方便的进行逻辑回归处理。前提是要真正理解逻辑回归模型的原理和推导过程。
实战中,机器学习和信息安全结合越来越紧密了,所以这也是我为啥开始学习机器学习的原因,就逻辑回归而言,完全可以用在防爬检测,扫描器检测,恶意URL提取的应用上,实战的前提是了解原理:)

这篇关于机器学习逻辑回归模型总结——从原理到sklearn实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065359

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、